Manufaturação industrial
Internet das coisas industrial | Materiais industriais | Manutenção e reparo de equipamentos | Programação industrial |
home  MfgRobots >> Manufaturação industrial >  >> Manufacturing Technology >> Processo de manufatura

Faça você mesmo crescer | GIY

Componentes e suprimentos

Tecnologia Microchip ATmega32U4
× 1
Espressif ESP8266 ESP-12E
× 1
Cristal 16 MHz
× 1
Power MOSFET N-Channel
× 4
Módulo regulador de tensão Digilent
× 1
Sensor DHT11 de Temperatura e Umidade (4 pinos)
× 1
Maxim Integrated DS18B20 Termômetro digital de 1 fio de resolução programável com resolução programável
× 1
MikroE Water Detect click
× 1
Tela LCD do Arduino
× 1
Resistor de foto
× 1

Ferramentas e máquinas necessárias

Impressora 3D (genérica)
Cortador a laser (genérico)

Aplicativos e serviços online

Autodesk Fusion 360
Arduino IDE

Sobre este projeto





Introdução


Fiquei muito inspirado depois de assistir a palestra TED sobre agricultura digital, apresentada pelo diretor da Open Agriculture Initiative do MIT, Caleb Harper, que surgiu com o tópico: Este computador vai crescer sua comida no futuro . A pergunta mais importante abordada em sua palestra que realmente me inspirou foi:E se pudéssemos cultivar alimentos deliciosos e ricos em nutrientes em qualquer lugar do mundo dentro de casa? E aqui nasceu a ideia!

Então, o que estou tentando fazer é algo como uma caixa ou incubadora, que seja capaz de criar as condições climáticas ideais para o crescimento, fornecendo exatamente a quantidade de luz e nutrientes que uma planta precisa. Quero construir um emulador de luz solar, sistema de irrigação e controlador de clima em um design elegante e moderno.

Estou planejando alcançar os resultados desejados implementando a seguinte tecnologia:

Aumentar a luz LED - a clorofila nas plantas responde principalmente a apenas dois comprimentos de onda, representados por 450nm e 650nm. O sistema LED que estou planejando usar terá uma combinação de luzes LED vermelhas e azuis para fornecer a combinação perfeita para ajudar no crescimento vegetativo e de floração.

Atomizador ultrassônico (criador de névoa) - Quero usar um novo método de irrigação, que descobri por conta própria recentemente, chamado aeropônico (FogPonics), que rega as plantas por meio de névoa com fertilizante.

Dosagem Automática de Nutrientes - Este sistema dosa automaticamente os nutrientes para as plantas exatamente quando eles precisam.

Sistema de detecção de água - Desejo equipar meu sistema com sensores de pH e TDS (Total Dissolved Solids) para ajudar a manter um valor de pH balanceado no reservatório de água que seja mais adequado para as plantas, bem como saber e alertar quando dosar os nutrientes.

Sistema de troca de água - o sistema deve ser equipado com um engate para mudanças automáticas de água. Quero tornar esse processo fácil e controlado apenas com o clique de um botão.

Sistema de controle de ar - Permite um controle preciso da temperatura e da umidade no interior do sistema, em um único grau. A tecnologia por trás envolve o uso de um sensor de temperatura / umidade como o DHT22 ou DHT11 para receber os dados e um ventilador com uma bobina para regulá-lo de acordo.

Aplicativo móvel - Eu realmente quero construir um aplicativo pela primeira vez na minha vida! Este aplicativo deve incluir informações em tempo real sobre o nível de pH, temperatura, umidade, nutrientes, ppm etc. e uma representação gráfica ao longo do tempo para acompanhar as estatísticas e compartilhar o progresso do crescimento nas redes sociais. Também quero implementar alertas inteligentes que me avisarão quando o sistema precisar de minha implicação. Eu também quero não só receber a representação de dados no meu telefone, mas também poder configurar as condições climáticas dentro do sistema!

Infelizmente, não fui o primeiro a ter esse tipo de ideia, mas a melhor maneira de ter uma ideia criativa é melhorar as existentes!

Existem vários projetos semelhantes disponíveis no mercado, no entanto, apesar de todas as vantagens individuais, eles também têm algumas desvantagens como ocupar muito espaço ou ser muito pequeno, muito caro, cultivar apenas uma safra por vez, etc. pesquisei e analisei cuidadosamente os pontos fortes e fracos dos projetos disponíveis e, considerando a resposta do mercado, quero propor um novo sistema de código aberto avançado, que reduzirá as desvantagens e implementará apenas os melhores recursos.

Muito ambicioso, não é? Mas vamos tentar





Experiências


Lidar com plantas consome muito tempo! Eles geralmente levam de várias semanas a vários meses para crescer, e eu tenho que estar pronto para isso!

Porque já sei o que quero construir para o meu projeto final, tenho que cuidar disso com antecedência e não deixar tudo para o último momento. É por isso que vou começar a testar e experimentar o mais rápido possível!

A primeira coisa que quero descobrir é o fato de que o cultivo de plantas usando névoa rica em nutrientes e aumentar luzes LED é melhor do que um sistema convencional em solo e luz solar natural! Em teoria, deveria ser exatamente o caso, mas não acredito em nada até tentar!

Então decidi começar meu próprio experimento, que vai levar algum tempo, e consiste em dividir as plantas em vários grupos:
  • (solo + luz solar) - este grupo crescerá em condições absolutamente naturais, plantado no solo e colocado no parapeito da janela.
  • (Nevoeiro + Sol) - este grupo será colocado em um recipiente, que terá uma névoa rica em nutrientes dentro, e também colocado no mesmo peitoril da janela
  • (Luz LED Solo + Grow) - este grupo estará no solo, mas usará luz LED Grow artificial em vez da luz do sol
  • (Nevoeiro + luz LED Grow) - este é suposto ser o HERÓI grupo) Como meu sistema futuro implementará esses dois recursos, a luz LED crescente e a nuvem de névoa rica em nutrientes, espero descobrir que essa combinação mostrará os melhores resultados!

Na loja alemã local Kaufland, no departamento de plantas, comprei as sementes de ervas mistas. Estes serão meus bebês de teste:p

Foi a primeira vez na minha vida que plantei alguma coisa:D não me julgue se fiz algo errado!)

Verifiquei vários tutoriais antes e aprendi que primeiro tenho que germinar as sementes. Peguei um recipiente de plástico, onde coloquei as sementes e as cobri com uma toalha de papel. Nessa fase, eles precisam de quase 100% de umidade, por isso usei um spray para regar as toalhas de papel e cobri o recipiente com o saco plástico para que a água não evaporasse.

Deixei as sementes por uma semana e meia, e quando abri o recipiente fiquei realmente surpreso!

Quase todas as sementes germinaram! Eu estava feliz como uma criança)

Em seguida, tive que selecionar as melhores plantinhas, as que tinham o caule mais grosso e pareciam maiores e melhores no geral.

No tutorial que eu estava acompanhando (blogueiro do YouTube), o cara recomendou plantar as plantinhas em qualquer tipo de meio, até que dêem as chamadas "folhas secundárias". Na Amazon, encomendei pelotas de coco . Eles são orgânicos, têm propriedades semelhantes às do solo, e o legal é que quando os pellets são regados, eles ficam x6 vezes maiores em tamanho.

Também comprei uma caixa, que tem separadores especiais para o plantio! Comprei por apenas 2 euros, o que tornou as coisas muito mais organizadas. Coloquei os pellets de coco dentro dos separadores da caixa, reguei até hidratar totalmente, coloquei as plantinhas no meio e cobri a caixa com um pedaço de plástico transparente que veio junto com o kit da caixa.

Minha pequena estufa era assim:

Fechei a caixa e deixei por uma semana!

E novamente, quando o abri, fiquei surpreso! Eles realmente se tornaram maiores! Nunca imaginei que conseguisse cultivar algumas plantas, mal consigo me cuidar:D

Depois de uma semana, a diferença é perceptível!

Agora, quando vejo as primeiras raízes, posso colocá-las no solo e em bolas de argila e começar a fazer experiências com a névoa!

Durante a semana de design auxiliado por computador, projetei os copos de rede, que usei para colocar as plantas

Também comprei em uma loja local um recipiente de plástico com as dimensões aproximadas de que preciso, e fiz os furos para furar!

E aqui está o meu sistema de teste montado, com as plantas dentro das pelotas de coco e bolas de argila, além do solo!

Para ser honesto, os resultados poderiam ser melhores:D

Apenas algumas plantas sobreviveram em meu sistema de névoa. Meu palpite é por causa do meio de crescimento! A névoa não é forte o suficiente para manter molhadas as bolas de argila, nem o solo.





Férias da Páscoa!


Durante as férias da Páscoa não fiz nada e, como o laboratório estava fechado, todo o sistema também estava desligado. Então, todas as minhas plantas morreram

Com a mente fresca, eu desejei fazer outro sistema, mas desta vez usando outro meio de cultivo baseado nas observações anteriores

O meio de cultivo que escolhi para este sistema é Rock Wool . Comprei-o na nossa loja IKEA local. Eu também comprei algumas sementes de seu departamento

E coloquei as novas sementes na lã de rocha para germinação por uma semana!

Depois de uma semana, verifiquei minha caixa e percebi que um tipo de semente deu certo, outro falhou! Por falta de tempo continuei com as sementes que germinaram

Nesse ínterim, configurei outro sistema de névoa, e tentarei aumentar seu tempo de trabalho, para ver se consigo germinar sementes usando névoa, SÓ FOG!

Vou continuar experimentando com diferentes parâmetros e configurações, e ver até onde posso chegar!)





Projeto e produção de eletrônicos


Antes de começar a projetar o quadro final, sentei para desenhar em um pedaço de papel todas as características e requisitos que o quadro deve implementar e cumprir! Eu também mantenho o controle de quantos pinos serão usados, a fim de estimar melhor e decidir qual será o microprocessador final

Aqui está o esboço do que deveria estar no quadro:

A escolha final sobre qual placa usar foi entre satshakit de Daniele Ingrassia e FABLEO por Jonathan Grinham

satshakit é um IDE Arduino 100% compatível com bibliotecas, placa fabbable e de código aberto, e também uma versão melhorada do Fabkit.





As principais melhorias e recursos do Fabkit são:

  • 16 MHz em vez de 8 MHz
  • cristal em vez de ressonador
  • custa menos (7-9 euros vs 13 euros)
  • 100% compatível com o IDE Arduino padrão (o satshakit é reconhecido como Arduino UNO)
  • ADC6 / 7 conectado em vez de ADC6 / 7 não conectado (satshakit laser e cnc)
  • espaço maior para soldagem fácil (satshakit laser e cnc)

Por outro lado, o FabLeo possui características muito semelhantes, além do hardware USB! Como já usei o ATmega328p antes, queria tentar algo novo e decidi usar o design FabLeo como meu ponto de partida

Minha Bíblia e o guia nº 1 para esta tarefa foi a pinagem ATmega32u4

Para projetar a placa, o software que irei usar para isso é EAGLE (Editor de layout gráfico facilmente aplicável) é uma captura esquemática EDA flexível e expansível, layout PCB, autorouter e programa CAM. EAGLE é popular entre os entusiastas por causa de sua licença de freeware e rica disponibilidade de bibliotecas de componentes na web.

Eagle tem duas janelas que são usadas simultaneamente para projetar uma placa:
  • Esquema (.sch) - componentes lógicos
  • Layout do quadro (.brd) para a placa real que fresamos

Depois de instalar o EAGLE, a primeira coisa que quero fazer é Criar um Novo Esquemático . Um esquema em eletrônica é um desenho que representa um circuito. Ele usa símbolos para representar componentes eletrônicos do mundo real. O símbolo mais básico é um condutor simples (traços), mostrado simplesmente como uma linha. Se os fios se conectam em um diagrama, eles são mostrados com um ponto na interseção.

Para colocar meus componentes nos esquemas, tenho que baixar e usar Bibliotecas especiais . A Eagle tem muitas bibliotecas de componentes que podemos usar. A rede fab também mantém uma biblioteca que é constantemente atualizada:

fab.lbr

Para instalar a biblioteca, no ambiente EAGLE, vá até a barra de ferramentas superior e selecione a Biblioteca cardápio. Em seguida, selecione use e abra o .lbr arquivo que acabei de baixar.

Agora posso ir para Adicionar componente e selecionando a biblioteca, eu escolho o componente que desejo colocar.

Quando eu tiver todos os componentes colocados em meus esquemas, tenho que conectar cada um deles aos pinos do microprocessador. No menu à esquerda EAGLE, clico em Rede , comando que me permite desenhar linhas verdes e conectar os pinos. O importante é iniciar a conexão a partir da linha no pino (marquei na foto)

Para evitar conexões múltiplas, usarei Marcadores. . No menu esquerdo do EAGLE, pressiono Adicionar etiqueta e adicione-o ao final da minha linha de conexão. Se eu pressionar o clique com o botão direito e, em seguida, escolha nome , Posso atribuir ao rótulo o mesmo nome que usei para o pino do microprocessador e conectá-los desta forma!

Se eu fiz tudo certo, uma mensagem aparecerá informando: Tem certeza de que deseja conectar sua etiqueta (N $ 10) com GND?

Nesta fase, na química, o importante é a Lógica de todas as conexões, não da maneira que parece. Depois de terminar de colocar todos os componentes e conectá-los de forma lógica, é assim que fica:

Eu adicionei o AVRISP pinheaders, e colocados de acordo com a ordem para o conector. Esses pinos serão usados ​​para programar minha placa.

Aqui está o esquema do USB circuito junto com o cristal

Eu também adicionei um Regulador de Tensão circuito que irá alimentar toda a placa, transformando a entrada de 12 V em 5 V

Uma das características importantes desta placa é o MOSFET circuitos, adicionei 4 deles, 3 conectados diretamente na entrada (12V), e um será conectado a um regulador de tensão elevador. O último será usado para alimentar a névoa que funciona a 24V

Depois de verificar todas as conexões, posso prosseguir para a próxima etapa, que é o Layout da placa . No menu superior, pressiono Gerar / Mudar para tabuleiro .

A primeira coisa que faço é aumentar a Grade resolução. Eu vou para Exibir menu e pressione Grid e altere os valores para 0,01 . Isso me permitirá ser mais preciso ao desenhar as linhas da rota.

Surpreendentemente, o roteamento da board mais complexa que fiz até agora também foi o mais rápido!) Estou orgulhoso de mim mesmo. A experiência de fazer pranchas teve uma boa influência no aumento da velocidade. Depois de terminar de rotear, é assim que a besta fica:

Para esta placa estou usando também o truque que aprendi antes. Eu desenho um polígono em torno de meus componentes e pressiono o clique com o botão direito na linha do polígono, mudo o nome para GND. Isso preencherá toda a área dentro do polígono e fará com que seja o GND.

Isso vai economizar muito tempo, espaço e esforço

Quando eu verifico tudo, posso Exportar meu arquivo como .png foto.

Na janela que aparece, eu aumento a resolução para 1500 dpi , clique em monocromático e selecione janela modo.

Para editar a imagem .png, irei usar o Abrir minha imagem no GIMP e usando a ferramenta de seleção retangular , Seleciono a imagem deixando algum espaço de todos os lados. Depois de pressionar Arquivo e Copiar a área selecionada. Para continuar trabalhando com a imagem selecionada, clico novamente em Arquivo e Criar da área de transferência

Isso é o que eu recebo depois de todas as edições:

Esta imagem está pronta para ser impressa, e vou chamá-la de Inside_Cut

Eu preparo o processo para o Corte Externo , e isso é o que eu recebo:

Como meu tabuleiro é dupla face, preciso moer duas peças e, em seguida, colá-las. A única coisa a ter em mente é que a parte inferior deve ser espelhada horizontalmente

Parte inferior Inside_Cut

Parte inferior Outside_Cut

Agora posso prosseguir para a fresadora CNC. Então, novamente eu usei FabModules para converter os arquivos .PNG em Gcodes para a máquina Roland.

Vamos começar a trabalhar com os Módulos Fab. Quando introduzo o endereço IP na janela do navegador, a primeira interface que aparecerá é:

Depois de pressionar o botão cinza formato de entrada , um novo menu deve aparecer com a opção de carregar a imagem .PNG. Aqui eu carrego a primeira imagem, que é a gravura interna. Depois de fazer isso, a visualização da imagem aparecerá nos Módulos Fab e também outros campos e outros parâmetros irão aparecer

No lado direito da janela, temos muitos parâmetros de entrada. Para poder mover a máquina, temos que inserir os seguintes parâmetros:

mod_lp.py / dev / usb / lp0 no comando enviar campo

hostname_of_your_machine no servidor campo (apenas o endereço sem http ou /)

Para mover a máquina, basta inserir nos respectivos campos as coordenadas das posições x, y e z. Antes de mover a máquina, tenho que me certificar de que o zjog parâmetro é sempre definido como 0, mesmo se ele for alterado automaticamente. Para mover a máquina, tenho que pressionar mover para xyz0 botão.

* Um pequeno hack de vida é usar o multímetro e verificar se há conexão entre a ferramenta e a superfície. Como uma ferramenta para gravar PCB é sugerido usar um diâmetro de 0,2 mm e abaixo, enquanto para o corte podemos usar um 1 mm ferramenta.

Então, minhas configurações finais são assim:

Para o corte externo, as configurações permanecem as mesmas com exceção do valor do eixo Z, pois substituí a ferramenta de 0,2 mm pela ferramenta de 1 mm. Isto é o que parece:

Repita o mesmo processo para a parte inferior e fresar as partes internas e externas:

Este é o resultado final para o Top papel:

E o Fundo papel:

E agora Vamos soldar isso!

In order to make sure that I soldered everything in a right way, after each component soldered, I used the multimeter to check if there is conductivity between the component and the traces.

Short animation of the process:

When I plugged in the PCB board to check if everything is fine, I noticed an error. From experience, I know that the error was from a short circuit, because the computer was disconecting the Arduino all the time I connect the VCC and GND to it. So my guess was that somewhere on the board VCC and GND are connected, and using the multimeter, I confirmed that I was right.

It was late, and I got so f*ckin' mad because of that, took me one hour under the microscope to find that little mistake. Aqui está:

I fixed it by scratching with a knife, and increasing the isolation!

Another thing is placing the Step Up Voltage Reguator on the back side of my board.

I measured the dimensions in advance, and designed predrilled holes to fix it with the pinheaders. But before soldering it on the back side, I have to calibrate it.

The idea is that when I power the board with 12V, the step up will output 24V necessary for the Ultrasonic Atomizer, which is connected to the MOSFET circuit

I used the bench power supply, with a fixed 12V, to measure the output voltage using a multimeter.

After I adjust the output to the one that I need, 24V in my case, I can solder it to the back side of my board!

Also on the back side, I placed the WiFi board which I made during the Networking and Communications week!

So, here is The BEAST :

A HERO picture for those who may think that it was easy, and everything went smooth :D





Download Files:


GIY Schematics (.sch)

GIY Layout (.brd)

Board#1 Internal Cut(.png)

Board#1 External Cut (.png)

Board#2 Internal Cut (.png)

Board#2 External Cut (.png)





Wiring &Embedded programming (I/O Devices)


To program my board I used Arduino IDE . I connect the arduino board to the USB hub, in the tools menu select the right board (Arduino Leonardo) and the port, after go to File --> examples and open the Arduino as ISP esboço. Upload the code.

After I see done uploading, which means that the code is uploaded to the board, I disconnect the arduino from the PC. The next step is to connect my PCB board to Arduino using some wires. The connection scheme is this one:
  • SCLK:Serial Clock (output from master) ----------> Arduino Pin 13
  • MOSI:Master Output Slave Input ----------> Arduino Pin 11
  • MISO:Master Input Slave Output ----------> Arduino Pin 12
  • VCC:Positive supply voltage ----------> Arduino VCC
  • GND:Ground ----------> Arduino GND
  • RST:----------> Arduino Pin 10

I connect the arduino board to the USB hub. Under Tools select the right board, select Arduino as ISP programmer, double check the parameters, and press the Burn Bootloader botão.

And I see Done Uploading! Good sign)

To test the board, I upload the basic Blink example code:

Ohh, I LOVE that BLINK :D      Now let's go to sensors!

First sensor that I want to use is DHT11 - Temperature &Humidity Sensor

These sensors are very basic and slow, but are great for hobbyists who want to do some basic data logging. The DHT sensors are made of two parts, a capacitive humidity sensor and a thermistor. There is also a very basic chip inside that does some analog to digital conversion and spits out a digital signal with the temperature and humidity. The digital signal is fairly easy to read using any microcontroller.

Some characteristics:
  • Ultra low cost
  • 3 to 5V power and I/O
  • 2.5mA max current use during conversion (while requesting data)
  • Good for 20-80% humidity readings with 5% accuracy
  • Good for 0-50°C temperature readings ±2°C accuracy
  • No more than 1 Hz sampling rate (once every second)
  • Body size 15.5mm x 12mm x 5.5mm
  • 4 pins with 0.1" spacing

The wiring is pretty easy, just VCC, GND, and any Digital Pin! In my case, I designed in advance the connection for this sensor.

To test it, I will upload a simple sketch. The sketch includes the library DHT.h

So here is the code:
 // DHT11 Temperature and Humidity Sensors Example#include "DHT.h" //include DHT library#define DHTPIN 2 //define as DHTPIN the Pin 2 used to connect the Sensor#define DHTTYPE DHT11 //define the sensor used(DHT11)DHT dht(DHTPIN, DHTTYPE); //create an instance of DHTvoid setup() { Serial.begin(9600); //initialize the Serial communication dht.begin(); //initialize the Serial communication}void loop() { float h =dht.readHumidity(); // reading Humidity float t =dht.readTemperature(); // read Temperature as Celsius (the default) Serial.print("Temperature ="); Serial.println(t, 2); //print the temperature Serial.print("Humidity =");; Serial.println(h, 2); //print the humidity delay(2000); //wait 2 seconds } 

When I open the Serial Monitor, this is what I get:

Another sensor which I want to use is DS18B20 - One Wire Digital Temperature Sensor

DS18B20 is 1-Wire digital temperature sensor from Maxim IC. Reports degrees in Celsius with 9 to 12-bit precision, from -55 to 125 (+/-0.5). Each sensor has a unique 64-Bit Serial number etched into it - allows for a huge number of sensors to be used on one data bus.

This is by far one of the most simple digital sensors to hookup. Aside from power and ground, it has a single digital signal pin that I will be connecting to digital pin which I designed in advance. It also requires a 4.7k pull-up resistor between the signal and power pin, which unfortunately I forgot to place on my PCB. That is why, I will solder it manually directly to the sensor cables.

Before I start, I have to download the libraries:OneWire.h and DallasTemperature.h

Upload the following sketch:
 // First we include the libraries#include #include #define ONE_WIRE_BUS 3 // Setup a oneWire instance to communicate with any OneWire devices, (not just Maxim/Dallas temperature ICs) OneWire oneWire(ONE_WIRE_BUS); // Pass our oneWire reference to Dallas Temperature. DallasTemperature sensors(&oneWire);void setup(void) { // start serial port Serial.begin(9600); sensors.begin(); } void loop(void) { // call sensors.requestTemperatures() to issue a global temperature (request to all devices on the bus)sensors.requestTemperatures(); // Send the command to get temperature readings Serial.print("Temperature is:"); Serial.print(sensors.getTempCByIndex(0)); //You can have more than one DS18B20 on the same bus. 0 refers to the first IC on the wire delay(1000); }  

The funny thing is that after I successfully programmed the sensor, It stopped working while I was integrating all the sensors together! I spend quite a long time trying to figure out why it does not work, but due to the limited time, I decided to use another DS18B20 sensor which was available in our FabLab stock, and waterproof it by myself!

So I took the sensor, and used the datasheet to properly solder the cables, and isolate them from each other using shrink tubes

I guess you have got the idea how I am going to waterproof it, right? :D Mama ama engineer!

Said &DONE!

Yeah, I know what it looks like :D but I assure you, its just a hand waterproof sensor. The most important is that it works, and does not leak when submerged in water!

And we go to the next sensor which is LDR =Light Dependent Resistor

LDR is a passive electronic component, basically a resistor which has a resistance that varies depending of the light intensity. The resistance is very high in darkness, almost high as 1MΩ but when there is light that falls on the LDR, the resistance is falling down to a few KΩ (10-20kΩ @ 10 lux, 2-4kOmega; @ 100 lux) depending on the model.

The LDR gives out an analog voltage when connected to Vcc (5V), which varies in magnitude in direct proportion to the input light intensity on it. That is, the greater the intensity of light, the greater the corresponding voltage from the LDR will be. Since the LDR gives out an analog voltage, it is connected to the analog input pin on the Arduino. The Arduino, with its built-in ADC (Analog to Digital Converter), then converts the analog voltage (from 0-5V) into a digital value in the range of (0-1023). When there is sufficient light in its environment or on its surface, the converted digital values read from the LDR through the Arduino will be in the range of 800-1023.

Here is the sketch code to test the sensor:
 int sensorPin =A0; /* select the input pin for LDR */int sensorValue =0; /* variable to store the value coming from the sensor */void setup(void) { Serial.begin(9600); /* start serial port */} void loop(void) { sensorValue =analogRead(sensorPin); // read the value from the sensor // We'll have a few threshholds, qualitatively determined Serial.print("LDR Value ="); Serial.print (sensorValue); if (sensorValue <100) { Serial.println(" (Dark)"); } else if (sensorValue <200) { Serial.println(" (Dim)"); } else if (sensorValue <500) { Serial.println(" (Light)"); } else if (sensorValue <800) { Serial.println(" (Bright)"); } else { Serial.println(" (Very bright)"); } delay(3000);}  

Next is Water Level Sensor

I want to have a water level sensor in order to receive an alarm when the water container is empty, and its time to add some water. Because I did not think about it in advance, and we did not have any water level sensor in our stock, I decided that I can make my own water sensor!

I decided to use the materials available, in my case the Soil Moisture Sensor . The basic principle of the water level sensor is to measure electric conductivity, which is the same for the soil moisture sensor. I thought that If I can calibrate the sensor in a way that will fulfil my requirements, I can use the moisture sensor like an water level sensor) In principle, this is an analog sensor and the data that we will read will be values from 0 to 1024, and the rest is just math!

But as it often happens, the reality is slightly different. When the sensor is not in touch with the water, the analog value is 0, and when I submerge only the tip, the value goes to 800. I used the following sketch to read the values:
 /* Print values from analog pin A4 to serial monitor */void setup(){ Serial.begin(9600); }void loop(){ Serial.println(analogRead(A4)); delay(100);}  

After I can read the values, I calibrated the sensor to give out three different responses:EMPTY! - when the value is 0, LOW when the values are around 800, and Full when the values are more than 900!





Graphic LCD Display


Because usually the LCD displays use a lot of pins, I had to find a way to connect the 128×64 screen in another way, and I DID!!! This way alows using only 3 Digital Pins on the board which is awesome because I may need the rest of the pins for other stuff, and it does not create a mess of wires. I premade the pins for the LCD on my PCB, and this is how I connected everything:

After I connect the LCD, It's time to programm it!

First of all, I have to download the U8glib library from HERE. Another important thing is the declared pins used in the code. The one I used are the following: U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE)

Using the "HELLO WORLD" library example, I came up with this test code:
 #include "U8glib.h"U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);void draw(void) { // graphic commands to redraw the complete screen should be placed here u8g.setFont(u8g_font_unifont); u8g.setPrintPos(0, 20); // call procedure from base class, http://arduino.cc/en/Serial/Print u8g.print("GIY Project v1.0!");}void setup(void) { // flip screen, if required // u8g.setRot180();}void loop(void) { // picture loop u8g.firstPage(); fazer {desenhar (); } while (u8g.nextPage ()); // rebuild the picture after some delay delay(500);} 

And this is what I get:

One cool idea that came to my mind was to display the FabLab logo for some seconds, all the time when the display is powered. I spent quite a lot of time on doing this, but I finally did it! In order to display it on the Graphic LCD, I had to have a (.bmp) format picture, and display it as a bitmap.

First thing which I did was download the FabLab logo from the internet as a (.png) file, and reduce it significantly in size, so it fits my small LCD borders. I used the following online service to do that:LINK

These are the configurations I used:

The next step is to convert my small picture into (.bmp) format. I used the following online service to do that:LINK

Now, after I have my (.bmp) file, in order to place it into my code, I have to convert it into HEX variedade. I used a nice tool called LCD Assistant . To load up an image in LCD Assistant, go to File> Load Image. A preview of the image should open up, make sure it’s the right size – 128 pixels wide, 64 pixels tall . Also make sure the Byte orientation is set to Horizontal and the Size endianness is set to Little . These are the configurations for my LCD Display:

Then I go to File> Save output to generate a temporary text Arquivo. Open that text file to have a look at my shiny new array.





pH Sensor


I should admit that this is the most tricky sensor from all that I played with! It is really hard to find any info about the sensor which I am using (logo ph sensor v1.1) , so I decided to make a detailed description about it!

The probe is like a (tiny) battery when placed in a liquid. Depending the pH it output a positive or negative voltage of a couple of millivolts. This value is too small and other tech stuff like impedance make it unusable directly with an Arduino, that's why you need an "op amp". The op amp board just convert the millivolts of the probe into to something acceptable for Arduino (positive between 0 and 5v).

There are 3 common buffer solutions used for pH measurement:pH 4.01, pH 6.86 and pH 9.18 (7.0 and 10.0 exists). I suggest the powder instead the liquid because it's cheaper, expire after longer and the powder can't be contaminated (vs bottle). You should read the product instructions but usually you have to put the content of the bag into 250ml of water and stir. You can use any water with an average pH (6-8) because the powder will saturate the water at the correct pH level. I personally use tap water (pH 7.4) and didn't see any difference between distilled, and demineralized water. Buffers are not stable in the time, this means that you cannot keep the solution for weeks or months.

Now let's talk more about the sensor that I am using!
  • Pin To:Should be the temperature but I can't make it work
  • Pin Po:Analog input signal
  • Pin To:Should be the temperature but I can't make it work
  • Pin Do:High/Low 3.3v adjustable limit.
  • Pin G/GND:Probe ground. It is useful when the ground is not the same as your Arduino. In some circumstances the ground voltage of the liquid to measure can be different.
  • Pin G/GND:Power ground (direct from the board).
  • Pin V+/VCC:Input power 5V DC (direct from the board).
  • Blue potentiometer (close to BNC):pH offset.
  • Blue potentiometer (close to pins):limit adjustment.

Now let's try to calibrate the sensor! There are 2 different parameters, the "offset" value and the "step" value

The offset is the shifting of all pH values to a specific voltage range. If a pH 7 output a voltage of 2.2v and pH 8 a voltage of 2.1v, then a shift of +0.3v move the pH 7 to 2.5v and the pH 8 to 2.4v. This can be done on the board or via software but it's probably easier on the board because it's probe independent and there are less programming to do.

Connect GND (both) and Vcc to Arduino GND and 5v. Remove the probe and do a short circuit between the the small BNC hole and the external part of BNC. Put a voltmeter (or Arduino) to measure the voltage between GND and Po. Adjust the pot (close BNC) until the output is 2.5v. Now the pH 7 have an exact value of 2.5v (511 with analogRead function) because the probe will output 0 millivolt.

To calibrate the steps I need one or more buffer solutions depending on the range and precision required. Ideally it is better to know the range of the measure with the system. I use water between pH 5 and pH 7, then I choose the buffer 4.01 (and 6.86 to verify my stuff). If you usually measure pH between 8 and 10 choose buffer 9.18 (eventually 6.86 also).

I connect the (clean) probe and put it in the buffer, then let it stabilize for a minute. I know it's stable when it goes up and down (3.04 then 3.05 then 3.03 then 3.04).Take note of the voltmeter (or Arduino) value, in my example it's 3.05v.

That's all, now I can use it with the code below.
 int ph_pin =A7; //This is the pin number connected to Povoid setup() {  Serial.begin(9600);}void loop() {  int measure =analogRead(ph_pin); Serial.print("Measure:"); Serial.print(measure); double voltage =5 / 1024.0 * measure; //classic digital to voltage conversion  Serial.print("\tVoltage:"); Serial.print(voltage, 3); // PH_step =(voltage@PH7 - voltage@PH4) / (PH7 - PH4)  // PH_probe =PH7 - ((voltage@PH7 - voltage@probe) / PH_step)  float Po =7 + ((2.5 - voltage) / 0.18); Serial.print("\tPH:"); Serial.print(Po, 3); Serial.println (""); delay(2000);}  

The PH_step calculation is quite simple. I take the difference between the two known voltage, in my example 2.5v@pH7 and [email protected] which is -0.55v. It's the voltage range equivalent of the pH range from 7 to 4.01, which is 2.99 pH units. A small division of the voltage by pH units gives a volts per pH number (0, 1839... in my case).

The PH_probe is calculated by taking the known pH 7 voltage (2.5v) where we add some PH_step to match the probe voltage. This means that a pH of 8 has a voltage value of 2.5v (pH 7) + 0.1839 (1 unit/step); pH 9 then is 2.5v + 0.1839 + 0.1839 =2.87v.

No magic, JUST MATH :D

MOSFET output:

I connected the RGB LED stripe and the Ultrasonic Atomizer to the MOSFET circuit outputs, which are controlled by digital pins. For the LED lights, I stated in the setup digitalWrite (LED, HIGH); , which means that the LED will switch on all the time when the system is powered. For the Fog maker, I made an If function depending on the water level value. If there is water, the fog maker is ON, if there is no water, EMPTY!, then the fog is OFF!

Now Let's put things together!

Here I came up with my final code:
 #include "dht.h"#include "U8glib.h"#include #include #define DHT11_PIN 2 // what digital pin we're connected to#define ONE_WIRE_BUS 3#define WATER_LEVEL A4#define LDR_PIN A3#define PH_PIN A5#define GROW_LIGHT 10#define FOG_PUMP 13int waterLevel;int LightLevel;int pH;dht DHT;OneWire oneWire(ONE_WIRE_BUS); DallasTemperature waterTemp(&oneWire);U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);const unsigned char logo [] PROGMEM ={0xFF, 0xFF, 0xFF, 0xFE, 0x7F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF8, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFE, 0x00, 0x03, 0xC0, 0x00, 0x7F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x07, 0xE0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x3F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0 x18, 0x1F, 0x00, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x00, 0x03, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x03, 0x80, 0x00, 0x00, 0x3F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x07, 0xE0, 0x00, 0x00, 0x1F, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x1F, 0xF0, 0x00, 0x00, 0x1F, 0xF0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3F, 0xF0, 0x00, 0x00, 0x1F, 0xFC, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x0 0, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xF8, 0x00, 0x00, 0x7F, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFC, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFF, 0x00, 0x01, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xC0, 0x07, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFE, 0x1F, 0xFF, 0xFF, 0xF0, 0x3C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF8, 0x03, 0xFF, 0xFF, 0xC0, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF0, 0x01, 0xFF, 0xFF, 0x80, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xF0, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x3F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x 00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFC, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFE, 0x00, 0x0F, 0xF0, 0x00, 0x3F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3E, 0x00, 0x0F, 0xF0, 0x00, 0x7C, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x1E, 0x00, 0x1F, 0xF8, 0x00, 0xF8, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x06, 0x00, 0x1F, 0xFC, 0x01, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0x0F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFC, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x7F, 0xFF, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x7F, 0xFF, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0x7F, 0xFF, 0x80, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x0F, 0xF0, 0x00, 0x1F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFC, 0x00, 0x03, 0xC0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0 x00, 0x00, 0x00,0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0xFD, 0x3F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};bool first;float hum =0.0;double T=0.0;void dht_test(float * humPerc);void setup(void) { waterTemp.begin(); pinMode (GROW_LIGHT, OUTPUT); pinMode (FOG_PUMP, OUTPUT); digitalWrite (GROW_LIGHT, HIGH); first =true; // assign default color value if ( u8g.getMode() ==U8G_MODE_R3G3B2 ) { u8g.setColorIndex(255); // white } else if ( u8g.getMode() ==U8G_MODE_GRAY2BIT ) { u8g.setColorIndex(3); // max intensity } else if ( u8g.getMode() ==U8G_MODE_BW ) { u8g.setColorIndex(1); // pixel on } else if ( u8g.getMode() ==U8G_MODE_HICOLOR ) { u8g.setHiColorByRGB(255,255,255); } // picture loop u8g.firstPage(); do { u8g.drawBitmapP( 32, 0, 16, 64, logo); } while (u8g.nextPage ()); dht_test(&hum);}void RefreshDisplay(float * humPerc, double *T, int *WL, int *LL, int *pH_value) { u8g.setFont(u8g_font_fub11); u8g.setFontRefHeightExtendedText(); u8g.setDefaultForegroundColor(); u8g.setFontPosTop(); u8g.drawStr( 4, 0, "Hum%"); u8g.setPrintPos( 68, 0); u8g.print( *humPerc); u8g.drawStr( 4, 15, "Temp"); u8g.setPrintPos( 68, 15); u8g.print( *T); u8g.drawStr( 4, 30, "Wlvl"); if (*WL ==0){ u8g.drawStr (68, 30,"EMPTY!"); digitalWrite (FOG_PUMP, LOW); } else{ if (*WL <800) u8g.drawStr (68, 30,"LOW"); else { digitalWrite(FOG_PUMP, HIGH); u8g.drawStr (68, 30,"HIGH"); } } if (*LL <100) { u8g.drawStr (68, 45,"Dark"); } else if (*LL <200) { u8g.drawStr (68, 45,"Dim"); } else if (*LL <500) { u8g.drawStr (68, 45, "Light"); } else if (*LL <800) { u8g.drawStr (68, 45,"Bright"); } else { u8g.drawStr (68, 45,"2Bright"); } double voltage =5.0 / 1024.0 * (*pH_value); float Po =7 + ((2.5 - voltage) / 0.18); u8g.drawStr (4, 45,"pH"); u8g.setPrintPos( 28, 45); u8g.print( Po); }void loop(void) {waterTemp.requestTemperatures();T =waterTemp.getTempCByIndex(0);waterLevel =analogRead(WATER_LEVEL);LightLevel =analogRead(LDR_PIN);pH =analogRead (PH_PIN);char status;int chk =DHT.read11(DHT11_PIN);hum =DHT.humidity; dht_test(&hum); if(first) { first =false; } else { u8g.firstPage(); do { RefreshDisplay(&hum, &T,&waterLevel, &LightLevel, &pH); } while (u8g.nextPage ()); }}void dht_test(float * humPerc) { // Wait a few seconds between measurements. delay(1000);}  





Download Files:


GIY Final Code (.ino)





3D Design &3D Printing


Actually for my final system, I used a lot of 3D design and 3D printing technique. I used two different printers, and played a lot with the settings until I got the desired result!

For 3D design, I used which as I mentioned before, is my favourite CAD software! I will not go too much into details of how to create simple shapes, and extrude objects, all this could be found during my Computer-Aided Design week, where I learned how to use diferent softwares, as well as 3D Scanning and Printing week.

The main task was to design the physical appearence of my system! The challenge was that I wanted it to look SEXY!!!

The aesthetics was a very important criteria, as well as functionality! The system should also be assemblable, which makes it even more challenging. I also wanted to integrate the skills which I learned like 3D printing, CNC milling, Laser cutting etc.

Before designing it in the digital world, I made a simple sketch on paper! Aqui está:

And this is the final 3D design:

My sexy ass system :D

First thing which I designed was the water container . Aqui está:

It incorporates several features! First, there is enough space for plants to grow, as well as in the middle I made a hole to place the Ultrasonic Atomizer. It is done because I wanted to level the fogger with the container. The thing is that the water level should be above the fogger by 2cm, so all the water which is leveled with the fogger hight, will not be used (waste)! So if I place the fogger below the container level, I have a water zero level exactly at the point where it should be, zero for the container =2cm above the fogger. In this way, all the water is used!

I also considered the hight of the container. Actually, all the dimensions of the container are measured during the experimental stage!

As you can see, I made a hole on the wall, which will be used for the cables from sensors placed in the water to hide into the electronics section. In the front of the container, I made the slot to attach the graphic display. I also designed some handles to easily remove the container when need!

From this perspective, you can see the electronics section. Now its opened, but I also designed a lid to close it. Inside the electronics section, I designed a hole to have access to power and program the board

On the bottom side I designed sliders which will be attached to the rest of the system, and make it easier to remove the container when needed, it will also play a role of fixation of the container in place!

And now Let's Print It!

I can proudly announce that the printer which I will be using is called BigRep 3D Printer , only available in our FabLab Kamp-Lintfort. It has a capacity of one cubic meter, and provides the largest FFF build volume for professional and industrial use.

The slicing software which I use is Simplify3D , one of the most advanced slicing tools, in my opinion, with a lot of configurations and options.

I do not think that there is a right and a wrong way to print something, you just have to play with the settings until you find the best options for the specific object to print.

Because this printer is new, there are not too many testings made. So, I had to experiment with the settings, and try, try and again try...

I will show bellow the settings that I will be using for my water container print, but some of them are intuitive.

I choose the Tool1 , because the BigRep Printer has two nozzels with two different filaments, and I have to specify which nozzel I want to use, as well as the nozzle diameter and the rest of the settings.





Layer:





Additions:





Infill:





Suporte:





Temperature:





Cooling:





Other:





Advanced:


These are the changes that I made, the rest of the settings I just left by default.

And then press on Prepare to Print . The software will generate the paths, and here we can check if everything is good, before sending the .gcode to the maschine.

Briefly about some of the printer's settings. I used Nozzle Temperature =205 deg.C , and the Bed Temperature =70 deg.C . After I positioned the X, Y, and Z axis , and double checked all the settings, I launched the job!

This is how the raw model looks like:

When I started removing the support and cleaning the model, I realized that this is a BIG pain in the ASS :D

As you can notice, the settings which I used are not really perfect, because the container has some big holes next to the edges. I had in my mind to waterproof it anyway, you can see how I did it in the Moulding &Casting section!

The next 3D printed part was the Net Pot . This is a cup which is designed to hold the seeds in the growing medium. More detailes about the first version of them you can see during my Computer-Aided Design week

This time I will improve the design a bit based on the observations that I made during the experimental stage. The main difference is the size of the empty space, which is increased a lot, to give an easier access for the fog to pass in, and for the roots to go through

So I just modified the old design, and added one more thing!

I made a slight fillet on the top part, to make the transition smoother. I also added a ball on the bottom, and used the Move command to move it a bit inside, and leave on the bottom around 2-3mm structure width

After I used the boolean substraction or Combine function, and I get this nice curviture at the bottom!

Now let's print it!

The 3D printer which I used is Ultimaker 2+ . To slice my 3D model, I will use, a very nice software, with an easy interface, and also functional. The material that I am using is PLA filament

After I import my .stl file, these are the settings that I am using:

Here it is my little army :D

From the final design of the system, I decided to also 3D print the bottom part. Its a big piece, and I will use the BigRap as well for this.

I wouldn't say that there is anything new about this, because I used the same settings as I used for the water container , and more or less the rest is the same

Here is the preview of the print:

Another thing which I 3D printed are the rounded corners on the top side of the system. I used the Ultimaker for this, and used the following settings:

The trick here was to achieve maximum smoothness on the surface, and I think I got a pretty good result:





Download Files:


GIY System Design (.f3d)

Net Pot Design (.f3d)





2D Design &Laser Cutting


I used the Laser cutting technique to cut acrylic parts which will cover all the inside part of the system, and give it a finished look!

I actually did not design the parts again, I just exported the already created sketches from Fusion 360 as .dxf files . After I exported the file, I used to edit the design before importing it into the lasercut machine

This is how the sketch looks in Fusion360:

Looks like a big mess, but the good part is that everything is parametric! It looks messy because I had to align everything into the right position, and keep the stuff parametric in case I have to make a change later

This is how the final sketch looks in Rhino before lasercutting:

I decided to use a green acrylic piece because it gives an organic look, and combines well with the green plants

For the front and the back cover, I decided to use white color. Its all about the taste, this is the way I see it, and this is how I like it.

The front and the back cover are very similar, have the same dimensions, except the inside cuts! The front cover has the hole for the LCD Display, here it is:

For the back cover, I want to make a hole to have access to power and program the board! Isto é o que parece:

Another lasercutted piece is on the top! I decided to use a transparent acrylic part, in order for the light to go through! I also designed some additional cuts, to decrease the weight, and give more space for the light to pass! I also measured the width of the RGB LED stripes, and will attach them in a way that there is enough room for the sunlight as well as artificial light!

I finished with the design, and now Let's Laser Cut!

The Laser Cutter that we are using here in FabLab is Epilog Fusion 60Watt, a CO2 lasercutter with a working area of 1016 x 711 mm. It can cut and ingrave materials like wood, cardboard, acrylic or other engineered plastics.

Because I used the same material for all the pieces, plexiglass 5mm , I used the same settings for all of them!





Download Files:


Front / Back Cover (.dxf)

Plant Holder (.dxf)

LED Light Holder (.dxf)





CNC Milling


Because I wanted to integrate in my system all the skills and techniques that I learned, I also have a piece of structure to CNC mill. I did not design it again, but I exported the .dxf file from Fusion360 sketch!

To cut my design, I will be using the big CNC monster.

A CNC (computer numerically controlled) is a machine that uses a cutting bit that rotates at a very high speed to remove material from a part.

The machine reads a pre‐programed computer file telling it where and how to cut, usually .GCode Arquivo. A cutting bit is rotated at a very high RPM by a spindle motor, which can move the bit up and down. This mechanism is moved left, right, front, and back by a cross arm. The machine is therefore known as a three‐axis router because it can move on the X, Y &Z axis. The machine can do two dimensional cutouts and etching, as well as three‐dimensional relief work.

In FabLab Kamp-Lintfort we have a CNC portal milling machine by  e(sign:Easy Worker MasterPro 2513.

It’s working area is 2600 x 1400 x 300mm and it comes with a vacuum table. We primarily use it for wood milling but with its HSD Spindel (3.9KW; 24.000U/min) it is also capable to mill metals easily.

The material which I will be using is 18mm Plywood

At first, I place the wood sheet on the CNC bed, and after I aligned it, switch on the vacuum. After I exported the .dxf file, I used to edit the design before importing it into the machine CAM software.

First, I have to HOME the machine!

To set the X, Y and Z Zero Positions, I home the machine by pressing the home button in the software (or on the remote control).

At first, I can set my zero X and Y roughly aligned to one of the corners of the bed. We also tried to use the laser for this, but all the time when simulating the process, it was showing collisions, because the zero was going out of the working area

Now I have to find the Z axis, which I do using the special tool which comes with the machine:

Important thing is to place it on the bed of the machine!

Now I can launch the first job, which is making the engraving. These are the settings which I used:

I press Calculate Toolpath to simulate the job and make sure that there are no collisions! After I save the .GCode , and launch the job, I get this window:

Now I can launch the outside cut:

This is what I get after the job is done:

Another piece which I had to mill is used for the Moulding &Casting section!

I prepared the mould to waterproof my water container. Here is the design:

There is nothing new about this. I used exactly the same settings as above. The only thing is the material thickness was 10mm wood , and I had to cut 7 pieces, to glue them together later and prepare my mould!





Download Files:


Structure Walls (.dxf)

Mould (.dxf)





Moulding &Casting


I used this technique in order to prepare a water container, to waterproof my existing container! I see it as a thin layer of material (a smaller container) which can be easily removable!

This is the result from the previous section CNC Milling

I cut 7 identical pieces, and aligned them using the reference holes! I also cut a big hole in the middle of 5 bottom pieces , in order to place the air pump inside, and easily remove the cast later.

After I glued all the pieces together, and fixed them, this is how it looks:

While waiting for the glue to dry out, I prepared a little plastic "thing" (do not know how to call it :D) for the pump. The idea is to be able to screw it on my mould, and remove it whenever I want!

When the mould is ready, this is how it looks:

And the back side:

I am ready to vacuum cast!

I used a vacuum machine available in our FabLab Kamp-Lintfort called Formech – Manual Vacuum Forming Machine

The thing is that I tried to do it many times, and all the time I could not remove the mould without breaking the cast! After several hours of trials, I came up with a solution! First, I vacuum casted one thin layer of material, and without removing it, I will cast the actual container on top of it. The first thin layer is slippery, and If I spray it with silicon, it will allow me to remove the mould way easier

After I let the silicon to dry a bit, I can cast the actual layer!

And here we are!!!

A hero shot for those who may thing that it was easy





Putting All Together


Now, let's put everything together! I will start by assembling the structure. Put next to me all the necessary tools:

A short animation of the process:

To assemble the lights, I cut the RGB LED stripes into 4 pieces (I measured the length in advance), and soldered them accordingly!

After I connected all the sensors, and managed the wiring, I fixed the board in the electronics section

And here it is the system!!! Everything assembled, nice looking growing system GIY

A HERO shot during the working process!





Final Presentation Video


© 2017 Albot Dima. All rights reserved | [email protected]

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

For mais details about o project, please visit o official source:

http://archive.fabacademy.org/2017/fablabkamplintfort/students/396/final.html

Código

  • GIY Board - CODE
  • GIY BOARD - LCD + LIGHT CODE
GIY Board - CODEArduino
#include "dht.h"#include "U8glib.h"#include #include #define DHT11_PIN 2 // what digital pin we're connected to#define ONE_WIRE_BUS 3#define WATER_LEVEL A4#define LDR_PIN A3#define PH_PIN A5#define GROW_LIGHT 10#define FOG_PUMP 13int waterLevel;int LightLevel;int pH;dht DHT;OneWire oneWire(ONE_WIRE_BUS); DallasTemperature waterTemp(&oneWire);U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);const unsigned char logo [] PROGMEM ={0xFF, 0xFF, 0xFF, 0xFE, 0x7F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF8, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFE, 0x00, 0x03, 0xC0, 0x00, 0x7F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x07, 0xE0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x3F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0 x18, 0x1F, 0x00, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x00, 0x03, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x03, 0x80, 0x00, 0x00, 0x3F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x07, 0xE0, 0x00, 0x00, 0x1F, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x1F, 0xF0, 0x00, 0x00, 0x1F, 0xF0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3F, 0xF0, 0x00, 0x00, 0x1F, 0xFC, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x0 0, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xF8, 0x00, 0x00, 0x7F, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFC, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFF, 0x00, 0x01, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xC0, 0x07, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFE, 0x1F, 0xFF, 0xFF, 0xF0, 0x3C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF8, 0x03, 0xFF, 0xFF, 0xC0, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF0, 0x01, 0xFF, 0xFF, 0x80, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xF0, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x3F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x 00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFC, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFE, 0x00, 0x0F, 0xF0, 0x00, 0x3F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3E, 0x00, 0x0F, 0xF0, 0x00, 0x7C, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x1E, 0x00, 0x1F, 0xF8, 0x00, 0xF8, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x06, 0x00, 0x1F, 0xFC, 0x01, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0x0F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFC, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x7F, 0xFF, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x7F, 0xFF, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0x7F, 0xFF, 0x80, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x0F, 0xF0, 0x00, 0x1F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFC, 0x00, 0x03, 0xC0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0 x00, 0x00, 0x00,0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0xFD, 0x3F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};bool first;float hum =0.0;double T=0.0;void dht_test(float * humPerc);void setup(void) { waterTemp.begin(); pinMode (GROW_LIGHT, OUTPUT); pinMode (FOG_PUMP, OUTPUT); digitalWrite (GROW_LIGHT, HIGH); first =true; // assign default color value if ( u8g.getMode() ==U8G_MODE_R3G3B2 ) { u8g.setColorIndex(255); // white } else if ( u8g.getMode() ==U8G_MODE_GRAY2BIT ) { u8g.setColorIndex(3); // max intensity } else if ( u8g.getMode() ==U8G_MODE_BW ) { u8g.setColorIndex(1); // pixel on } else if ( u8g.getMode() ==U8G_MODE_HICOLOR ) { u8g.setHiColorByRGB(255,255,255); } // picture loop u8g.firstPage(); do { u8g.drawBitmapP( 32, 0, 16, 64, logo); } while (u8g.nextPage ()); dht_test(&hum);}void RefreshDisplay(float * humPerc, double *T, int *WL, int *LL, int *pH_value) { u8g.setFont(u8g_font_fub11); u8g.setFontRefHeightExtendedText(); u8g.setDefaultForegroundColor(); u8g.setFontPosTop(); u8g.drawStr( 4, 0, "Hum%"); u8g.setPrintPos( 68, 0); u8g.print( *humPerc); u8g.drawStr( 4, 15, "Temp"); u8g.setPrintPos( 68, 15); u8g.print( *T); u8g.drawStr( 4, 30, "Wlvl"); if (*WL ==0){ u8g.drawStr (68, 30,"EMPTY!"); digitalWrite (FOG_PUMP, LOW); } else{ if (*WL <800) u8g.drawStr (68, 30,"LOW"); else { digitalWrite(FOG_PUMP, HIGH); u8g.drawStr (68, 30,"HIGH"); } } if (*LL <100) { u8g.drawStr (68, 45,"Dark"); } else if (*LL <200) { u8g.drawStr (68, 45,"Dim"); } else if (*LL <500) { u8g.drawStr (68, 45,"Light"); } else if (*LL <800) { u8g.drawStr (68, 45,"Bright"); } else { u8g.drawStr (68, 45,"2Bright"); } double voltage =5.0 / 1024.0 * (*pH_value); float Po =7 + ((2.5 - voltage) / 0.18); u8g.drawStr (4, 45,"pH"); u8g.setPrintPos( 28, 45); u8g.print( Po); }void loop(void) {waterTemp.requestTemperatures();T =waterTemp.getTempCByIndex(0);waterLevel =analogRead(WATER_LEVEL);LightLevel =analogRead(LDR_PIN);pH =analogRead (PH_PIN);char status;int chk =DHT.read11(DHT11_PIN);hum =DHT.humidity; dht_test(&hum); if(first) { first =false; } else { u8g.firstPage(); do { RefreshDisplay(&hum, &T,&waterLevel, &LightLevel, &pH); } while (u8g.nextPage ()); }}void dht_test(float * humPerc) { // Wait a few seconds between measurements. delay(1000);}
GIY BOARD - LCD + LIGHT CODEArduino
#include "U8glib.h"int led =10;U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);void draw(void) { // graphic commands to redraw the complete screen should be placed here u8g.setFont(u8g_font_unifont); u8g.setPrintPos(0, 20); // call procedure from base class, http://arduino.cc/en/Serial/Print u8g.print("GIY Project v1.0!");}void setup(void) { pinMode (led, OUTPUT); digitalWrite (led, HIGH);}void loop(void) { // picture loop u8g.firstPage(); fazer {desenhar (); } while (u8g.nextPage ()); // rebuild the picture after some delay delay(500);}

Esquemas


Processo de manufatura

  1. Cartão de visita do jogo Tic Tac Toe
  2. Sensor de temperatura múltipla
  3. Controle de ferro de solda DIY para 862D +
  4. MotionSense
  5. Impressora 3D Segurança contra incêndio
  6. IoT Gauge com Arduino, Yaler e IFTTT
  7. Levitação eletromagnética repulsiva Arduino
  8. Controle Remoto Gripper Bot
  9. Registrador de dados do balão meteorológico Arduino
  10. CoroFence - Detector Térmico🖖