Manufaturação industrial
Internet das coisas industrial | Materiais industriais | Manutenção e reparo de equipamentos | Programação industrial |
home  MfgRobots >> Manufaturação industrial >  >> Manufacturing Technology >> Processo de manufatura

DIY 3 eixos CNC VMC

Componentes e suprimentos

Arduino Nano R3
× 1
Raspberry Pi 3 Modelo B
× 1
SparkFun Stepper motor driver board A4988
× 1
Adafruit Arduino Nano 4-stepper 1-DC RepRap shield
× 1
Espaçadores de alumínio OpenBuilds
× 1
fonte de alimentação 12v / 5a
× 1
OpenBuilds L Bracket
× 1
OpenBuilds M5 Tee Nuts (10 unidades)
× 1
Parafusos de baixo perfil OpenBuilds M5 (10 unidades)
× 1
Parafusos de cabeça com tampa OpenBuilds M3
× 1
Parafuso de fixação OpenBuilds
× 1
OpenBuilds Slot Washer - 15x5x2mm
× 1
Bloco de porca anti-folga OpenBuilds para parafuso de avanço métrico Acme de 8 mm
× 1
Placa de haste roscada OpenBuilds - Motor de passo NEMA 17
× 1
Parafuso de avanço métrico OpenBuilds 8 mm Acme
× 1
Bloco de porca anti-folga OpenBuilds para parafuso de avanço métrico Acme de 8 mm
× 1
Rolamento de esferas OpenBuilds - 625 2RS 5x16x5
× 1
haste lisa
× 1
ventilador de refrigeração bldc
× 1
Motor DC (genérico)
× 1
Servos (Tower Pro MG996R)
× 1
Drivers de motor Dual H-Bridge da Texas Instruments L293D
× 1

Ferramentas e máquinas necessárias

Chaves de fenda
Furadeira
Dremel / ferramenta de corte rotativa
Pistola de cola
Ferro de soldar (genérico)
rebarbadora

Aplicativos e serviços online

Linux
ArtCAM
GRBL 0.9
Autodesk Fusion 360
Arduino IDE
Google Android Things
VNC

Sobre este projeto


Nosso modelo de protótipo é baseado em IoT, proporcionando uma arquitetura escalável para ser usado de praticamente qualquer lugar com uma conexão à Internet. Este é um CNC 350 mm x 350 mm com uma área de trabalho de 250 mm x 240 mm, rodando em software de controle de movimento de código aberto (GRBL). Até mesmo nosso hardware também é em grande parte de código aberto e, portanto, ocorre a maior redução de custos. Esta máquina é feita inteiramente de itens comprados localmente e pode usinar madeira, plástico, borracha dura, resina dura, etc. Nosso objetivo principal é a fabricação de PCB de baixo custo.

A perspectiva de desejo por madeira também está lá.

Estamos planejando adicionar suporte de usinagem a laser também como parte de nosso projeto futuro.

Como o sistema pode ser atualmente controlado de uma intranet local sem fio, queremos escaloná-lo ainda mais para fazer um aplicativo da Web de modelo distribuído para fazer e conectar um ecossistema de vários desses tipos de dispositivos.

As possibilidades são ilimitadas com nossa máquina.

Nosso modelo de protótipo tem sua estrutura base feita de extrusões de alumínio com fenda em T 2020 e juntas em L. A máquina fornece cerca de 80-85 Watts de potência com seu fuso controlado por CC de 2.000 rpm. Possui parafuso de avanço e esquema de movimento de haste roscada com hastes lisas guiando com rolamentos de esferas de encaixe instantâneo com ranhura radial para operações suaves ao longo de todos os 3 eixos.

O passo mínimo de avanço é 0,8 mm / revolução com 2000 passos / revolução, temos uma resolução de 1600 para todos os eixos. O tamanho da nossa máquina em bruto é de cerca de 430x430x330mm e a área de trabalho é de cerca de 270x170x65mm com precisão posicional de 0,04 mm. Nosso pórtico de eixo Z é impresso em 3D do zero com hastes de guia duplas.

O eixo Z percorre 4,8 cm com a ponta do fuso montada. Estamos usando uma ferramenta de corte de 45 ° V-bit para fins de gravação de PCB, ela também suporta brocas de 0,2 mm a 1,8 mm. Estamos usando motores de passo NEMA 23 com corrente máxima de 3A para cada transmissão principal do eixo. Os motores são acionados por drivers 2,5A A4988 com resolução máxima de micro-passos de 1/16, proporcionando-nos a máxima precisão de usinagem a um custo muito econômico.

Para a parte IoT, tornamos possível controlar o roteador CNC a partir de um display sem cabeça, como uma tela de celular / tablet (atuando como nosso HMI aqui) de qualquer lugar com uma conexão à Internet. Estamos usando um Raspberry Pi e um dispositivo de roteador (segurança) conectado à internet e executando um servidor web para fornecer uma interface para controlar nosso CNC sem fio. Também estamos planejando obter insights valiosos sobre as peças da máquina, como torque do motor em tempo real, corrente extraída, vibração, ruído, etc. e obter insights em tempo real em uma plataforma da web para melhor colaboração. O que talvez seja chamado no setor de manufatura como IoT Industrial (INDÚSTRIA 4.0) .

Código

  • Amostra de Gcode
  • Stepper Code
  • Bibliotecas
  • Biblioteca
Amostra de código G VHDL
 (Versão rabiscada de C:\ Users \ ABDERR ~ 1 \ AppData \ Local \ Temp \ ink_ext_XXXXXX.svgISF45X @ 3000.00) (unicorn.py --tab ="plotter_setup" --pen-up-angle =50 - pen-down-angle =30 --start-delay =160 --stop-delay =150 --xy-feedrate =3000 --z-feedrate =150 --z-height =0 --finished-height =0 - -register-pen =true --x-home =0 --y-home =0 --num-cópias =1 --continuous =false --pause-on-layer-change =true C:\ Usuários \ ABDERR ~ 1 \ AppData \ Local \ Temp \ ink_ext_XXXXXX.svgISF45X) G21 (ftw métrico) G90 (modo absoluto) G92 X0.00 Y0.00 Z0.00 (você está aqui) M300 S30 (caneta para baixo) G4 P160 (esperar 160ms) M300 S50 (caneta para cima) G4 P150 (espere 150ms) M18 (desengate os drives) M01 (O teste de registro foi bem sucedido?) M17 (engate os drives se SIM, e continue) M01 (Plotting layer 'Calque 1') (Polyline consistindo de 29 segmentos. ) G1 X16.85 Y4.97 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X14.07 Y5.98 F3000.00G1 X13.33 Y6.40 F3000.00G1 X10.74 Y6.40 F3000 .00G1 X8.14 Y6.49 F3000.00G1 X10.60 Y6.58 F3000.00G1 X13.07 Y6.64 F3000.00G1 X12.75 Y6.98 F3000.00G1 X11. 99 Y8.33 F3000.00G1 X12.30 Y9.13 F3000.00G1 X12.98 Y9.85 F3000.00G1 X14.73 Y10.48 F3000.00G1 X16.42 Y10.34 F3000.00G1 X16.89 Y10.16 F3000 .00G1 X17.20 Y10.44 F3000.00G1 X17.44 Y10.92 F3000.00G1 X15.95 Y12.12 F3000.00G1 X14.52 Y13.21 F3000.00G1 X14.17 Y14.50 F3000.00G1 X14.18 Y14.85 F3000.00G1 X13.90 Y14.95 F3000.00G1 X13.30 Y15.34 F3000.00G1 X13.02 Y16.08 F3000.00G1 X13.23 Y16.62 F3000.00G1 X14.03 Y16.94 F3000. 00G1 X14.80 Y16.89 F3000.00G1 X15.21 Y16.80 F3000.00G1 X15.35 Y17.02 F3000.00G1 X15.71 Y17.77 F3000.00G1 X16.05 Y18.61 F3000.00G1 X15.77 Y19 .35 F3000.00G1 X15.47 Y20.24 F3000.00G1 X15.20 Y20.73 F3000.00G1 X13.98 Y20.91 F3000.00G1 X12.47 Y21.26 F3000.00G1 X11.32 Y21.88 F3000.00G1 X10.23 Y23.00 F3000.00G1 X9.82 Y24.17 F3000.00G1 X9.94 Y24.90 F3000.00G1 X10.41 Y25.47 F3000.00G1 X10.77 Y25.78 F3000.00G1 X10.53 Y26. 37 F3000.00G1 X10.04 Y28.07 F3000.00G1 X10.02 Y29.68 F3000.00G1 X10.50 Y31.25 F3000.00G1 X11.46 Y32.80 F3000.00G1 X13.34 Y34.54 F3000.00G1 X15 .75 Y36.02 F3000.00G1 X16.94 Y3 6,57 F3000.00G1 X11.31 Y36.60 F3000.00G1 X5.53 Y36.58 F3000.00G1 X5.38 Y21.60 F3000.00G1 X5.41 Y8.55 F3000.00G1 X5.62 Y6.61 F3000.00G1 X5 .85 Y6.48 F3000.00G1 X5.50 Y6.40 F3000.00G1 X5.14 Y6.40 F3000.00G1 X5.14 Y21.60 F3000.00G1 X5.14 Y36.80 F3000.00G1 X11.39 Y36.80 F3000.00G1 X17.65 Y36.80 F3000.00G1 X18.65 Y37.07 F3000.00G1 X21.13 Y37.54 F3000.00G1 X23,70 Y37.69 F3000.00G1 X26.12 Y37.52 F3000.00G1 X28. 11 Y37.03 F3000.00G1 X28.70 Y36.80 F3000.00G1 X33.01 Y36.80 F3000.00G1 X37.32 Y36.80 F3000.00G1 X37.32 Y21.60 F3000.00G1 X37.32 Y6.40 F3000 .00G1 X32.21 Y6.40 F3000.00G1 X26.73 Y6.25 F3000.00G1 X22.57 Y5.07 F3000.00G1 X16.85 Y4.97 F3000.00G1 X16.85 Y4.97 F3000.00M300 S50.00 (caneta para cima) G4 P150 (espere 150ms) (polilinha consistindo em 29 segmentos.) G1 X20.57 Y5.03 F3000.00M300 S30,00 (caneta para baixo) G4 P160 (espere 160ms) G1 X23.06 Y5.34 F3000. 00G1 X24.86 Y5.94 F3000.00G1 X25.99 Y6.82 F3000.00G1 X26.48 Y8.01 F3000.00G1 X26.11 Y9.51 F3000.00G1 X24.89 Y10.76 F3000.00G1 X23.73 Y11 .07 F3000.00G1 X22.18 Y10.75 F3 000.00G1 X20.76 Y10.29 F3000.00G1 X20.13 Y9.96 F3000.00G1 X19.83 Y9.40 F3000.00G1 X19.66 Y9.17 F3000.00G1 X19.74 Y9.72 F3000.00G1 X20.51 Y10.61 F3000.00G1 X21.41 Y11.91 F3000.00G1 X21.31 Y12.42 F3000.00G1 X20,85 Y12.91 F3000.00G1 X19.04 Y13.73 F3000.00G1 X18.83 Y13.81 F3000. 00G1 X19.56 Y13.72 F3000.00G1 X20.90 Y13.07 F3000.00G1 X21.48 Y12.71 F3000.00G1 X21.88 Y12.90 F3000.00G1 X23.87 Y14.56 F3000.00G1 X24.34 Y15 .23 F3000.00G1 X23.85 Y15.22 F3000.00G1 X19.04 Y15.20 F3000.00G1 X16.99 Y15.70 F3000.00G1 X15.62 Y16.42 F3000.00G1 X15.31 Y16.66 F3000.00G1 X14.86 Y15.95 F3000.00G1 X14.39 Y14.29 F3000.00G1 X14.89 Y12.97 F3000.00G1 X16.02 Y12.25 F3000.00G1 X17.19 Y11.48 F3000.00G1 X17.63 Y10. 79 F3000.00G1 X16.90 Y10.01 F3000.00G1 X16.07 Y9.45 F3000.00G1 X16.23 Y9.73 F3000.00G1 X16.50 Y10.15 F3000.00G1 X14.70 Y10.34 F3000.00G1 X13 .17 Y9.72 F3000.00G1 X12.44 Y9.03 F3000.00G1 X12.23 Y8.30 F3000.00G1 X12.53 Y7.53 F3000.00G1 X13.34 Y6.71 F3000.00G1 X15.72 Y5.44 F3000.00G1 X18.83 Y4.95 F3000.00G1 X20. 57 Y5.03 F3000.00G1 X20.57 Y5.03 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X27.30 Y6.65 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X29.25 Y7.52 F3000.00G1 X30.16 Y8.34 F3000.00G1 X30.46 Y9.06 F3000.00G1 X30.29 Y9.88 F3000.00G1 X29.49 Y10.84 F3000.00G1 X28.16 Y11.51 F3000.00G1 X26.25 Y11.62 F3000.00G1 X25.07 Y10.96 F3000.00G1 X25.51 Y10.50 F3000.00G1 X26.26 Y9.62 F3000. 00G1 X26.58 Y8.19 F3000.00G1 X26.44 Y7.12 F3000.00G1 X25.77 Y6.34 F3000.00G1 X25.47 Y6.07 F3000.00G1 X25.68 Y6.08 F3000.00G1 X27.30 Y6 .65 F3000.00G1 X27.30 Y6.65 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo de 29 segmentos.) G1 X37.06 Y21.42 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X37.02 Y36.41 F3000.00G1 X36.96 Y36.62 F3000.00G1 X33.06 Y36.62 F3000.00G1 X29.16 Y36.58 F3000.00G1 X29.47 Y36. 10 F3000.00G1 X29.73 Y35.05 F3000.00G1 X29.34 Y34.00 F3000.00G1 X28.36 Y33.19 F3000.00G1 X26.78 Y32.58 F3000.00G1 X24.56 Y32.18 F3000.00G1 X24 0,11 Y32.04 F3000.00G1 X24.44 Y31.73 F3000.00G1 X25.27 Y31.55 F3000.00G1 X28.11 Y31.00 F3000.00G1 X28.91 Y30.55 F3000.00G1 X29.29 Y29.72 F3000. 00G1 X29.84 Y28.76 F3000.00G1 X30.44 Y28.08 F3000.00G1 X30.69 Y27.27 F3000.00G1 X30.58 Y26.46 F3000.00G1 X30.11 Y25.77 F3000.00G1 X29.82 Y25 .45 F3000.00G1 X29.90 Y25.05 F3000.00G1 X29.83 Y24.22 F3000.00G1 X28.51 Y23.12 F3000.00G1 X26.38 Y22.66 F3000.00G1 X25.09 Y22.48 F3000.00G1 X24.68 Y22.25 F3000.00G1 X24.95 Y22.15 F3000.00G1 X26.03 Y21.82 F3000.00G1 X27.25 Y21.07 F3000.00G1 X27.59 Y20.36 F3000.00G1 X27.42 Y19. 68 F3000.00G1 X26.21 Y18.82 F3000.00G1 X24.70 Y18.51 F3000.00G1 X24.39 Y18.50 F3000.00G1 X24.42 Y18.22 F3000.00G1 X24.59 Y16.70 F3000.00G1 X24 .63 Y15.61 F3000.00G1 X24.39 Y15.01 F3000.00G1 X23.81 Y14.22 F3000.00G1 X23.52 Y13.85 F3000.00G1 X24.03 Y13.49 F3000.00G1 X24.69 Y12.99 F3000.00G1 X24.78 Y12.31 F3000.00G1 X24.54 Y11.48 F3000.00G1 X24.58 Y11.08 F3000.00G1 X25.21 Y11.31 F3000.00G1 X26.08 Y11.74 F3000.00G1 X27. 14 Y11.85 F3000.00G1 X28.29 Y11.66 F3000.00G1 X29.41 Y11.16 F3000.00G1 X30.24 Y10.39 F3000.00G1 X30.57 Y9.37 F3000.00G1 X30.36 Y8.29 F3000.00G1 X29.62 Y7.56 F3000. 00G1 X28.50 Y6.94 F3000.00G1 X27.96 Y6.65 F3000.00G1 X32.49 Y6.61 F3000.00G1 X37.02 Y6.63 F3000.00G1 X37.06 Y21.42 F3000.00G1 X37.06 Y21 .42 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X21.74 Y10.75 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X23.52 Y11.21 F3000.00G1 X24.24 Y11.32 F3000.00G1 X24.56 Y12.13 F3000.00G1 X24.48 Y12.99 F3000.00G1 X23.87 Y13.45 F3000.00G1 X23.38 Y13. 75 F3000.00G1 X22.69 Y13.25 F3000.00G1 X21.76 Y12.68 F3000.00G1 X21.57 Y12.14 F3000.00G1 X21.44 Y11.41 F3000.00G1 X20.80 Y10.64 F3000.00G1 X20 .54 Y10.34 F3000.00G1 X21.74 Y10.75 F3000.00G1 X21.74 Y10.75 F3000.00M300 S50.00 (caneta para cima) G4 P150 (espere 150ms) (Polilinha consistindo em 29 segmentos.) G1 X14. 28 Y15.20 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X14.69 Y15.95 F3000.00G1 X14.87 Y16.70 F3000.00G1 X13.98 Y16.78 F3000.00G1 X13.23 Y16.33 F3000.00G1 X13.26 Y15.80 F3000.00G1 X13.54 Y15.32 F3000.00G1 X13.94 Y15.06 F3000.00G1 X14.28 Y15.20 F3000.00G1 X14.28 Y15. 20 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X23,89 Y15.40 F3000.00M300 S30,00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X24 .27 Y15.61 F3000.00G1 X24.44 Y16.05 F3000.00G1 X24.22 Y18.19 F3000.00G1 X24.03 Y18.95 F3000.00G1 X23.02 Y18.27 F3000.00G1 X20.70 Y17.13 F3000.00G1 X19.62 Y17.10 F3000.00G1 X18.46 Y17.41 F3000.00G1 X16.91 Y18.21 F3000.00G1 X16.22 Y18.67 F3000.00G1 X16.19 Y18.46 F3000.00G1 X15. 83 Y17.68 F3000.00G1 X15.47 Y16.93 F3000.00G1 X16.23 Y16.20 F3000.00G1 X18.05 Y15.51 F3000.00G1 X21.11 Y15.23 F3000.00G1 X23.89 Y15.40 F3000 .00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X21.29 Y17.47 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X23.50 Y18.80 F3000.00G1 X25.56 Y20.02 F3000.00G1 X26.14 Y20.17 F3000.00G1 X25.92 Y20.50 F3000.00G1 X24.80 Y21.28 F3000.00G1 X23.98 Y21.4 0 F3000.00G1 X22.98 Y21.10 F3000.00G1 X21.95 Y20.78 F3000.00G1 X21.63 Y20.62 F3000.00G1 X21.08 Y19.88 F3000.00G1 X20.05 Y19.10 F3000.00G1 X19 .03 Y19.22 F3000.00G1 X18.43 Y19.27 F3000.00G1 X17.95 Y19.18 F3000.00G1 X17.51 ​​Y19.96 F3000.00G1 X17.19 Y20.04 F3000.00G1 X16.57 Y20.11 F3000.00G1 X16.13 Y20.58 F3000.00G1 X15.93 Y20.86 F3000.00G1 X15,70 Y20.63 F3000.00G1 X15,78 Y19.60 F3000.00G1 X16.86 Y18.45 F3000.00G1 X19. 13 Y17.31 F3000.00G1 X20.21 Y17.23 F3000.00G1 X21.29 Y17.47 F3000.00G1 X21.29 Y17.47 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo de 29 segmentos.) G1 X26.41 Y19.09 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X27.14 Y19.61 F3000.00G1 X27.43 Y20.17 F3000.00G1 X27.29 Y20.74 F3000.00G1 X26.71 Y21.31 F3000.00G1 X25.56 Y21.85 F3000.00G1 X24.35 Y22.08 F3000.00G1 X21.62 Y21.55 F3000.00G1 X21.69 Y21.22 F3000. 00G1 X21.91 Y20.88 F3000.00G1 X22.79 Y21.19 F3000.00G1 X24.30 Y21.49 F3000.00G1 X25.22 Y21.29 F3000.00G1 X25.94 Y20.72 F3000.00G1 X26.24 Y20 .20 F300 0.00G1 X25.65 Y19.87 F3000.00G1 X24.63 Y19.41 F3000.00G1 X24.25 Y18.98 F3000.00G1 X24.58 Y18.70 F3000.00G1 X25.38 Y18.71 F3000.00G1 X26.41 Y19.09 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X20.47 Y19.52 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X21.59 Y21.02 F3000.00G1 X21.45 Y21.31 F3000.00G1 X20.18 Y21.30 F3000.00G1 X18.93 Y20.60 F3000.00G1 X18.73 Y19.89 F3000.00G1 X19.06 Y19 .38 F3000.00G1 X19.71 Y19.20 F3000.00G1 X20.47 Y19.52 F3000.00G1 X20.47 Y19.52 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (Polilinha consistindo em 29 segmentos.) G1 X18.40 Y19.46 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X18.59 Y20.01 F3000.00G1 X18,80 Y20.68 F3000.00G1 X19.52 Y21. 20 F3000.00G1 X19.94 Y21.43 F3000.00G1 X19.77 Y21.57 F3000.00G1 X19.01 Y21.70 F3000.00G1 X18.36 Y21.46 F3000.00G1 X17.92 Y20.91 F3000.00G1 X17 .75 Y20.12 F3000.00G1 X18.11 Y19.31 F3000.00G1 X18.40 Y19.46 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (Polilinha consisti ng de 29 segmentos.) G1 X17.34 Y20.21 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X17.57 Y20.59 F3000.00G1 X18.44 Y21.73 F3000.00G1 X18. 77 Y21.86 F3000.00G1 X18.44 Y21.92 F3000.00G1 X17.48 Y21.91 F3000.00G1 X16.63 Y21.60 F3000.00G1 X16.25 Y20.93 F3000.00G1 X16.60 Y20.24 F3000 .00G1 X17.34 Y20.21 F3000.00G1 X17.34 Y20.21 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X16.11 Y21.33 F3000. 00M300 S30,00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X17.34 Y22.06 F3000.00G1 X18,96 Y21.93 F3000.00G1 X19,98 Y21.60 F3000.00G1 X22,66 Y21,94 F3000. 00G1 X25.66 Y22.90 F3000.00G1 X27.77 Y24.32 F3000.00G1 X28.39 Y24.96 F3000.00G1 X27.58 Y24.90 F3000.00G1 X25.33 Y24.89 F3000.00G1 X26.59 Y25 .01 F3000.00G1 X28.53 Y25.22 F3000.00G1 X29.82 Y25.72 F3000.00G1 X30.47 Y26.50 F3000.00G1 X30.47 Y27.56 F3000.00G1 X29.78 Y28.65 F3000.00G1 X28.52 Y29.02 F3000.00G1 X27.29 Y28.75 F3000.00G1 X26.23 Y27.86 F3000.00G1 X25.65 Y27.41 F3000.00G1 X24.92 Y27.29 F3000.00G1 X24.65 Y27. 31 F30 00.00G1 X24.86 Y27.34 F3000.00G1 X25.18 Y27.38 F3000.00G1 X24.95 Y27.67 F3000.00G1 X24.54 Y28.37 F3000.00G1 X23.69 Y29.39 F3000.00G1 X23.07 Y30.03 F3000.00G1 X23.26 Y29.99 F3000.00G1 X24.15 Y29.94 F3000.00G1 X24,73 Y30.08 F3000.00G1 X24,88 Y30.40 F3000.00G1 X25.06 Y30,76 F3000. 00G1 X25.72 Y30.30 F3000.00G1 X26.44 Y29.84 F3000.00G1 X27.29 Y29.51 F3000.00G1 X28.61 Y29.15 F3000.00G1 X29.24 Y29.13 F3000.00G1 X29.14 Y29 .58 F3000.00G1 X28.98 Y30.21 F3000.00G1 X27.91 Y30.88 F3000.00G1 X25.68 Y31.34 F3000.00G1 X22,80 Y31.52 F3000.00G1 X19.80 Y31.37 F3000.00G1 X18.50 Y31.23 F3000.00G1 X18.49 Y31.31 F3000.00G1 X22.58 Y31.67 F3000.00G1 X24.11 Y31.73 F3000.00G1 X23.99 Y31.95 F3000.00G1 X23.36 Y32. 13 F3000.00G1 X20.76 Y32.50 F3000.00G1 X20.31 Y32.72 F3000.00G1 X21.00 Y32.57 F3000.00G1 X23.09 Y32.33 F3000.00G1 X25.50 Y32.44 F3000.00G1 X27 .74 Y33.07 F3000.00G1 X29.12 Y34.03 F3000.00G1 X29.56 Y35.31 F3000.00G1 X28.81 Y36.44 F3000.00G1 X27.64 Y37.03 F3000.00G1 X25.83 Y37.40 F3000.00G1 X21.36 Y37.42 F30 00.00G1 X17.13 Y36.41 F3000.00G1 X13.56 Y34.53 F3000.00G1 X12.16 Y33.30 F3000.00G1 X11.08 Y31.92 F3000.00G1 X10.41 Y30.48 F3000.00G1 X10.25 Y28.79 F3000.00G1 X10.59 Y26.73 F3000.00G1 X10.96 Y25.92 F3000.00G1 X11.64 Y26.09 F3000.00G1 X14.41 Y26.25 F3000.00G1 X14.93 Y26.37 F3000. 00G1 X18.16 Y28.80 F3000.00G1 X19.16 Y29.37 F3000.00G1 X19.89 Y29.55 F3000.00G1 X21.95 Y29.85 F3000.00G1 X21.69 Y29.97 F3000.00G1 X21.49 Y30 .07 F3000.00G1 X22.66 Y29.69 F3000.00G1 X23.99 Y28.19 F3000.00G1 X22.32 Y28.67 F3000.00G1 X19.99 Y29.36 F3000.00G1 X19.26 Y29.28 F3000.00G1 X18.96 Y28.62 F3000.00G1 X18.86 Y28.24 F3000.00G1 X18.84 Y28.58 F3000.00G1 X18.72 Y28.93 F3000.00G1 X16.87 Y27.79 F3000.00G1 X15.17 Y26. 36 F3000.00G1 X15.64 Y25.80 F3000.00G1 X16.13 Y25.37 F3000.00G1 X15.74 Y25.56 F3000.00G1 X14,85 Y25.99 F3000.00G1 X13.66 Y26.16 F3000.00G1 X11 .44 Y25.87 F3000.00G1 X10.64 Y25.45 F3000.00G1 X10.13 Y24.87 F3000.00G1 X10.03 Y23.93 F3000.00G1 X10.90 Y22.46 F3000.00G1 X12.38 Y21.47 F3000.00G1 X15.35 Y20.88 F30 00.00G1 X16.11 Y21.33 F3000.00G1 X16.11 Y21.33 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X20.69 Y22.24 F3000. 00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X20,79 Y22,76 F3000.00G1 X21,29 Y23.38 F3000.00G1 X22.37 Y23.78 F3000.00G1 X23.34 Y23.52 F3000. 00G1 X23.44 Y23.35 F3000.00G1 X23.10 Y23.48 F3000.00G1 X22.40 Y23.62 F3000.00G1 X21.47 Y23.27 F3000.00G1 X20.95 Y22.70 F3000.00G1 X20.99 Y22 .34 F3000.00G1 X20.95 Y22.21 F3000.00G1 X20.69 Y22.24 F3000.00M300 S50.00 (caneta para cima) G4 P150 (espere 150ms) (polilinha consistindo em 29 segmentos.) G1 X14.38 Y22. 80 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X13.38 Y23.55 F3000.00G1 X13.10 Y23.93 F3000.00G1 X13.67 Y24.07 F3000.00G1 X14.55 Y23. 88 F3000.00G1 X14.63 Y23.70 F3000.00G1 X14.39 Y23.52 F3000.00G1 X14.16 Y23.28 F3000.00G1 X14.51 Y22.88 F3000.00G1 X15.06 Y22.64 F3000.00G1 X15 .20 Y22.59 F3000.00G1 X14.92 Y22.47 F3000.00G1 X14.38 Y22.80 F3000.00G1 X14.38 Y22.80 F3000.00M300 S50.00 (caneta para cima) G4 P150 (wai t 150ms) (polilinha consistindo em 29 segmentos.) G1 X12.06 Y23.03 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X12.09 Y23.74 F3000.00G1 X12.87 Y24.26 F3000.00G1 X13.76 Y24.43 F3000.00G1 X14.60 Y24.23 F3000.00G1 X16.38 Y23.00 F3000.00G1 X15.54 Y23.51 F3000.00G1 X14.54 Y24.12 F3000.00G1 X13. 63 Y24.26 F3000.00G1 X12.46 Y23.91 F3000.00G1 X12.19 Y23.55 F3000.00G1 X12.21 Y23.14 F3000.00G1 X12.23 Y22.89 F3000.00G1 X12.06 Y23.03 F3000 .00G1 X12.06 Y23.03 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X21.77 Y26.53 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X20.93 Y27.02 F3000.00G1 X20.39 Y27.69 F3000.00G1 X20.47 Y29.03 F3000.00G1 X20.47 Y28.66 F3000.00G1 X20.46 Y27.93 F3000. 00G1 X20.81 Y27.32 F3000.00G1 X20.97 Y27.19 F3000.00G1 X20.93 Y27.34 F3000.00G1 X21.01 Y27.75 F3000.00G1 X21.46 Y27.92 F3000.00G1 X21.99 Y27 .74 F3000.00G1 X22.19 Y27.29 F3000.00G1 X21.82 Y26.88 F3000.00G1 X21.45 Y26.76 F3000.00G1 X21.85 Y26.63 F3000.00G1 X22.79 Y26.50 F3 000.00G1 X23.47 Y26.76 F3000.00G1 X23.76 Y27.26 F3000.00G1 X23.87 Y27.64 F3000.00G1 X23.99 Y27.52 F3000.00G1 X23.83 Y26.97 F3000.00G1 X23.03 Y26.40 F3000.00G1 X21.77 Y26.53 F3000.00G1 X21.77 Y26.53 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X27.79 Y22 .99 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X29.58 Y24.08 F3000.00G1 X29.65 Y25.26 F3000.00G1 X29.13 Y25.25 F3000.00G1 X28.43 Y24 .71 F3000.00G1 X26.00 Y22.88 F3000.00G1 X26.04 Y22.79 F3000.00G1 X27.79 Y22.99 F3000.00G1 X27.79 Y22.99 F3000.00M300 S50.00 (caneta para cima) G4 P150 (espere 150ms) (Polilinha consistindo em 29 segmentos.) G1 X25.85 Y27.75 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (espere 160ms) G1 X26.10 Y28.24 F3000.00G1 X25.81 Y28. 87 F3000.00G1 X24.91 Y29.47 F3000.00G1 X24.81 Y29.07 F3000.00G1 X25.01 Y28.67 F3000.00G1 X25.41 Y28.54 F3000.00G1 X25.55 Y28.20 F3000.00G1 X25 .36 Y27.82 F3000.00G1 X25.25 Y27.58 F3000.00G1 X25.43 Y27.46 F3000.00G1 X25.85 Y27.75 F3000.00M300 S50.00 (caneta para cima) G4 P150 (wa ele 150ms) (polilinha consistindo em 29 segmentos.) G1 X23.53 Y28.63 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X22.85 Y29.32 F3000.00G1 X22.16 Y29.64 F3000.00G1 X21.18 Y29.54 F3000.00G1 X20.71 Y29.43 F3000.00G1 X22.20 Y28.86 F3000.00G1 X23.73 Y28.29 F3000.00G1 X23.53 Y28.63 F3000.00G1 X23. 53 Y28.63 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo de 29 segmentos.) G1 X27.46 Y28.97 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms ) G1 X27.72 Y29.09 F3000.00G1 X26.09 Y29.77 F3000.00G1 X25.56 Y29.96 F3000.00G1 X25.77 Y29.98 F3000.00G1 X25.59 Y30.22 F3000.00G1 X25.15 Y30.48 F3000.00G1 X25.02 Y30.03 F3000.00G1 X25.02 Y29.65 F3000.00G1 X25.34 Y29.43 F3000.00G1 X26.04 Y28.78 F3000.00G1 X26.34 Y28.31 F3000. 00G1 X26.77 Y28.61 F3000.00G1 X27.46 Y28.97 F3000.00G1 X27.46 Y28.97 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X24.71 Y29.72 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X24.20 Y29.82 F3000.00G1 X23.65 Y29.70 F3000.0 0G1 X24.07 Y29.24 F3000.00G1 X24.53 Y28.81 F3000.00G1 X24.62 Y29.16 F3000.00G1 X24.71 Y29.72 F3000.00G1 X24.71 Y29.72 F3000.00M300 S50.00 ( caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X5.54 Y5.46 F3000.00M300 S30,00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X5,91 Y5.48 F3000.00G1 X5.65 Y5.39 F3000.00G1 X5.54 Y5.46 F3000.00G1 X5.54 Y5.46 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X6 .11 Y5.52 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X6.17 Y5.64 F3000.00G1 X6.18 Y5.47 F3000.00G1 X6.11 Y5.52 F3000.00G1 X6 .11 Y5.52 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X6.34 Y5.49 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X6.88 Y5.56 F3000.00G1 X7.42 Y5.50 F3000.00G1 X6.88 Y5.43 F3000.00G1 X6.34 Y5.49 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X7.58 Y5.52 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X7.74 Y5.60 F3000.00G1 X7.8 3 Y5.48 F3000.00G1 X7.58 Y5.52 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X8.50 Y5.49 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X8.86 Y5.58 F3000.00G1 X9.21 Y5.51 F3000.00G1 X8.86 Y5.42 F3000.00G1 X8.50 Y5.49 F3000.00M300 S50.00 (caneta para cima) G4 P150 (espere 150ms) (polilinha consistindo em 29 segmentos.) G1 X6,75 Y6.41 F3000.00M300 S30,00 (caneta para baixo) G4 P160 (espere 160ms) G1 X6,93 Y6.46 F3000. 00G1 X6.91 Y6.29 F3000.00G1 X6.75 Y6.41 F3000.00G1 X6.75 Y6.41 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X7.49 Y6.39 F3000.00M300 S30.00 (caneta para baixo) G4 P160 (esperar 160ms) G1 X7.53 Y6.53 F3000.00G1 X7.70 Y6.45 F3000.00G1 X7.49 Y6.39 F3000.00G1 X7.49 Y6.39 F3000.00M300 S50.00 (caneta para cima) G4 P150 (esperar 150ms) (polilinha consistindo em 29 segmentos.) G1 X16.85 Y4.97 F3000.00M300 S30.00 (caneta para baixo) G4 P160 ( aguarde 160ms) G1 X14.07 Y5.98 F3000.00G1 X13.33 Y6.40 F3000.00G1 X10.74 Y6.40 F3000.00G1 X8.14 Y6.49 F3000.00G1 X10.60 Y6.58 F3000 .00G1 X13.07 Y6.64 F3000.00G1 X12.75 Y6.98 F3000.00G1 X11.99 Y8.33 F3000.00G1 X12.30 Y9.13 F3000.00G1 X12.98 Y9.85 F3000.00G1 X14.73 Y10.48 F3000.00G1 X16.42 Y10.34 F3000.00G1 X16.89 Y10.16 F3000.00G1 X17.20 Y10.44 F3000.00G1 X17.44 Y10.92 F3000.00G1 X15.95 Y12.12 F3000. 00G1 X14.52 Y13.21 F3000.00G1 X14.17 Y14.50 F3000.00G1 X14.18 Y14.85 F3000.00G1 X13.90 Y14.95 F3000.00G1 X13.30 Y15.34 F3000.00G1 X13.02 Y16 .08 F3000.00G1 X13.23 Y16.62 F3000.00G1 X14.03 Y16.94 F3000.00G1 X14.80 Y16.89 F3000.00G1 X15.21 Y16.80 F3000.00G1 X15.35 Y17.02 F3000.00G1 X15.71 Y17.77 F3000.00G1 X16.05 Y18.61 F3000.00G1 X15.77 Y19.35 F3000.00G1 X15.47 Y20.24 F3000.00G1 X15.20 Y20.73 F3000.00G1 X13.98 Y20. 91 F3000.00G1 X12.47 Y21.26 F3000.00G1 X11.32 Y21.88 F3000.00G1 X10.23 Y23.00 F3000.00G1 X9.82 Y24.17 F3000.00G1 X9.94 Y24.90 F3000.00G1 X10 .41 Y25.47 F3000.00G1 X10.77 Y25.78 F3000.00G1 X10.53 Y26.37 F3000.00G1 X10.04 Y28.07 F3000.00G1 X10.02 Y29.68 F3000.00G1 X10.50 Y31.25 F3000.00G1 X11.46 Y32.80 F3000.00G1 X 13.34 Y34.54 F3000.00G1 X15.75 Y36.02 F3000.00G1 X16.94 Y36.57 F3000.00G1 X11.31 Y36.60 F3000.00G1 X5.53 Y36.58 F3000.00G1 X5.38 Y21.60 F3000 .00G1 X5.41 Y8.55 F3000.00G1 X5.62 Y6.61 F3000.00G1 X5.85 Y6.48 F3000.00G1 X5.50 Y6.40 F3000.00G1 X5.14 Y6.40 F3000.00G1 X5.14 Y21.60 F3000.00G1 X5.14 Y36.80 F3000.00G1 X11.39 Y36.80 F3000.00G1 X17.65 Y36.80 F3000.00G1 X18.65 Y37.07 F3000.00G1 X21.13 Y37.54 F3000. 00G1 X23.70 Y37.69 F3000.00G1 X26.12 Y37.52 F3000.00G1 X28.11 Y37.03 F3000.00G1 X28.70 Y36.80 F3000.00G1 X33.01 Y36.80 F3000.00G1 X37.32 Y36 .80 F3000.00G1 X37.32 Y21.60 F3000.00G1 X37.32 Y6.40 F3000.00G1 X32.21 Y6.40 F3000.00G1 X26.73 Y6.25 F3000.00G1 X22.57 Y5.07 F3000.00G1 X16.85 Y4.97 F3000.00G1 X16.85 Y4.97 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X20.57 Y5.03 F3000.00M300 S30 .00 (pen down)G4 P160 (wait 160ms)G1 X23.06 Y5.34 F3000.00G1 X24.86 Y5.94 F3000.00G1 X25.99 Y6.82 F3000.00G1 X26.48 Y8.01 F3000.00G1 X26 .11 Y9.51 F3000.00G1 X24.89 Y 10.76 F3000.00G1 X23.73 Y11.07 F3000.00G1 X22.18 Y10.75 F3000.00G1 X20.76 Y10.29 F3000.00G1 X20.13 Y9.96 F3000.00G1 X19.83 Y9.40 F3000.00G1 X19.66 Y9.17 F3000.00G1 X19.74 Y9.72 F3000.00G1 X20.51 Y10.61 F3000.00G1 X21.41 Y11.91 F3000.00G1 X21.31 Y12.42 F3000.00G1 X20.85 Y12.91 F3000.00G1 X19.04 Y13.73 F3000.00G1 X18.83 Y13.81 F3000.00G1 X19.56 Y13.72 F3000.00G1 X20.90 Y13.07 F3000.00G1 X21.48 Y12.71 F3000.00G1 X21.88 Y12.90 F3000.00G1 X23.87 Y14.56 F3000.00G1 X24.34 Y15.23 F3000.00G1 X23.85 Y15.22 F3000.00G1 X19.04 Y15.20 F3000.00G1 X16.99 Y15.70 F3000.00G1 X15.62 Y16.42 F3000.00G1 X15.31 Y16.66 F3000.00G1 X14.86 Y15.95 F3000.00G1 X14.39 Y14.29 F3000.00G1 X14.89 Y12.97 F3000.00G1 X16.02 Y12.25 F3000.00G1 X17.19 Y11.48 F3000.00G1 X17.63 Y10.79 F3000.00G1 X16.90 Y10.01 F3000.00G1 X16.07 Y9.45 F3000.00G1 X16.23 Y9.73 F3000.00G1 X16.50 Y10.15 F3000.00G1 X14.70 Y10.34 F3000.00G1 X13.17 Y9.72 F3000.00G1 X12.44 Y9.03 F3000.00G1 X12.23 Y8.30 F3000.00G1 X12.53 Y7.53 F3000.00G1 X13.34 Y6.71 F3000 .00G1 X15.72 Y5.44 F3000.00G1 X18.83 Y4.95 F3000.00G1 X20.57 Y5.03 F3000.00G1 X20.57 Y5.03 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X27.30 Y6.65 F3000.00M300 S30.00 (pen down)G4 P160 (wait 160ms)G1 X29.25 Y7.52 F3000.00G1 X30.16 Y8.34 F3000.00G1 X30.46 Y9.06 F3000.00G1 X30.29 Y9.88 F3000.00G1 X29.49 Y10.84 F3000.00G1 X28.16 Y11.51 F3000.00G1 X26.25 Y11.62 F3000.00G1 X25.07 Y10.96 F3000.00G1 X25.51 Y10.50 F3000.00G1 X26.26 Y9.62 F3000.00G1 X26.58 Y8.19 F3000.00G1 X26.44 Y7.12 F3000.00G1 X25.77 Y6.34 F3000.00G1 X25.47 Y6.07 F3000.00G1 X25.68 Y6.08 F3000.00G1 X27.30 Y6.65 F3000.00G1 X27.30 Y6.65 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X37.06 Y21.42 F3000.00M300 S30.00 (pen down)G4 P160 (wait 160ms)G1 X37.02 Y36.41 F3000.00G1 X36.96 Y36.62 F3000.00G1 X33.06 Y36.62 F3000.00G1 X29.16 Y36.58 F3000.00G1 X29.47 Y36.10 F3000.00G1 X29.73 Y35.05 F3000.00G1 X29.34 Y34.00 F3000.00G1 X28.36 Y33.19 F3000.00G 1 X26.78 Y32.58 F3000.00G1 X24.56 Y32.18 F3000.00G1 X24.11 Y32.04 F3000.00G1 X24.44 Y31.73 F3000.00G1 X25.27 Y31.55 F3000.00G1 X28.11 Y31.00 F3000.00G1 X28.91 Y30.55 F3000.00G1 X29.29 Y29.72 F3000.00G1 X29.84 Y28.76 F3000.00G1 X30.44 Y28.08 F3000.00G1 X30.69 Y27.27 F3000.00G1 X30.58 Y26.46 F3000.00G1 X30.11 Y25.77 F3000.00G1 X29.82 Y25.45 F3000.00G1 X29.90 Y25.05 F3000.00G1 X29.83 Y24.22 F3000.00G1 X28.51 Y23.12 F3000.00G1 X26.38 Y22.66 F3000.00G1 X25.09 Y22.48 F3000.00G1 X24.68 Y22.25 F3000.00G1 X24.95 Y22.15 F3000.00G1 X26.03 Y21.82 F3000.00G1 X27.25 Y21.07 F3000.00G1 X27.59 Y20.36 F3000.00G1 X27.42 Y19.68 F3000.00G1 X26.21 Y18.82 F3000.00G1 X24.70 Y18.51 F3000.00G1 X24.39 Y18.50 F3000.00G1 X24.42 Y18.22 F3000.00G1 X24.59 Y16.70 F3000.00G1 X24.63 Y15.61 F3000.00G1 X24.39 Y15.01 F3000.00G1 X23.81 Y14.22 F3000.00G1 X23.52 Y13.85 F3000.00G1 X24.03 Y13.49 F3000.00G1 X24.69 Y12.99 F3000.00G1 X24.78 Y12.31 F3000.00G1 X24.54 Y11.48 F3000.00G1 X24.58 Y11.08 F3000.00G1 X25.21 Y11.31 F3000.00G 1 X26.08 Y11.74 F3000.00G1 X27.14 Y11.85 F3000.00G1 X28.29 Y11.66 F3000.00G1 X29.41 Y11.16 F3000.00G1 X30.24 Y10.39 F3000.00G1 X30.57 Y9.37 F3000.00...This file has been truncated, please download it to see its full contents.
Stepper CodeArduino
//AMIT#include #include #define LINE_BUFFER_LENGTH 512char STEP =MICROSTEP;// Servo position for Up and Down const int penZUp =115;const int penZDown =83;// Servo on PWM pin 10const int penServoPin =10;// Should be right for DVD steppers, but is not too important hereconst int stepsPerRevolution =48; // create servo object to control a servo Servo penServo; // Initialize steppers for X- and Y-axis using this Arduino pins for the L293D H-bridgeAF_Stepper myStepperY(stepsPerRevolution,1); AF_Stepper myStepperX(stepsPerRevolution,2); /* Structures, global variables */struct point { float x; float y; float z; };// Current position of plotheadstruct point actuatorPos;// Drawing settings, should be OKfloat StepInc =1;int StepDelay =0;int LineDelay =0;int penDelay =50;// Motor steps to go 1 millimeter.// Use test sketch to go 100 steps. Measure the length of line. // Calculate steps per mm. Enter here.float StepsPerMillimeterX =100.0;float StepsPerMillimeterY =100.0;// Drawing robot limits, in mm// OK to start with. Could go up to 50 mm if calibrated well. float Xmin =0;float Xmax =40;float Ymin =0;float Ymax =40;float Zmin =0;float Zmax =1;float Xpos =Xmin;float Ypos =Ymin;float Zpos =Zmax; // Set to true to get debug output.boolean verbose =false;// Needs to interpret // G1 for moving// G4 P300 (wait 150ms)// M300 S30 (pen down)// M300 S50 (pen up)// Discard anything with a (// Discard any other command!/********************** * void setup() - Initialisations ***********************/void setup() { // Setup Serial.begin( 9600 ); penServo.attach(penServoPin); penServo.write(penZUp); delay(100); // Decrease if necessary myStepperX.setSpeed(600); myStepperY.setSpeed(600); // Set &move to initial default position // TBD // Notifications!!! Serial.println("Mini CNC Plotter alive and kicking!"); Serial.print("X range is from "); Serial.print(Xmin); Serial.print(" to "); Serial.print(Xmax); Serial.println(" mm."); Serial.print("Y range is from "); Serial.print(Ymin); Serial.print(" to "); Serial.print(Ymax); Serial.println(" mm."); }/********************** * void loop() - Main loop ***********************/void loop() { delay(100); char line[ LINE_BUFFER_LENGTH ]; char c; int lineIndex; bool lineIsComment, lineSemiColon; lineIndex =0; lineSemiColon =false; lineIsComment =false; while (1) { // Serial reception - Mostly from Grbl, added semicolon support while ( Serial.available()>0 ) { c =Serial.read(); if (( c =='\n') || (c =='\r') ) { // End of line reached if ( lineIndex> 0 ) { // Line is complete. Then execute! line[ lineIndex ] ='\0'; // Terminate string if (verbose) { Serial.print( "Received :"); Serial.println( line ); } processIncomingLine( line, lineIndex ); lineIndex =0; } else { // Empty or comment line. Skip block. } lineIsComment =false; lineSemiColon =false; Serial.println("ok"); } else { if ( (lineIsComment) || (lineSemiColon) ) { // Throw away all comment characters if ( c ==')' ) lineIsComment =false; // End of comment. Resume line. } else { if ( c <=' ' ) { // Throw away whitepace and control characters } else if ( c =='/' ) { // Block delete not supported. Ignore character. } else if ( c =='(' ) { // Enable comments flag and ignore all characters until ')' or EOL. lineIsComment =true; } else if ( c ==';' ) { lineSemiColon =true; } else if ( lineIndex>=LINE_BUFFER_LENGTH-1 ) { Serial.println( "ERROR - lineBuffer overflow" ); lineIsComment =false; lineSemiColon =false; } else if ( c>='a' &&c <='z' ) { // Upcase lowercase line[ lineIndex++ ] =c-'a'+'A'; } else { line[ lineIndex++ ] =c; } } } } }}void processIncomingLine( char* line, int charNB ) { int currentIndex =0; char buffer[ 64 ]; // Hope that 64 is enough for 1 parameter struct point newPos; newPos.x =0.0; newPos.y =0.0; // Needs to interpret // G1 for moving // G4 P300 (wait 150ms) // G1 X60 Y30 // G1 X30 Y50 // M300 S30 (pen down) // M300 S50 (pen up) // Discard anything with a ( // Discard any other command! while( currentIndex =Xmax) { x1 =Xmax; } if (x1 <=Xmin) { x1 =Xmin; } if (y1>=Ymax) { y1 =Ymax; } if (y1 <=Ymin) { y1 =Ymin; } if (verbose) { Serial.print("Xpos, Ypos:"); Serial.print(Xpos); Serial.print (","); Serial.print(Ypos); Serial.println (""); } if (verbose) { Serial.print("x1, y1:"); Serial.print(x1); Serial.print (","); Serial.print(y1); Serial.println (""); } // Convert coordinates to steps x1 =(int)(x1*StepsPerMillimeterX); y1 =(int)(y1*StepsPerMillimeterY); float x0 =Xpos; float y0 =Ypos; // Let's find out the change for the coordinates long dx =abs(x1-x0); long dy =abs(y1-y0); int sx =x0 dy) { for (i=0; i=dx) { over-=dx; myStepperY.onestep(sy,STEP); } delay(StepDelay); } } else { for (i=0; i=dy) { over-=dy; myStepperX.onestep(sx,STEP); } delay(StepDelay); } } if (verbose) { Serial.print("dx, dy:"); Serial.print(dx); Serial.print (","); Serial.print(dy); Serial.println (""); } if (verbose) { Serial.print("Going to ("); Serial.print(x0); Serial.print(","); Serial.print(y0); Serial.println(")"); } // Delay before any next lines are submitted delay(LineDelay); // Update the positions Xpos =x1; Ypos =y1;}// Raises penvoid penUp() { penServo.write(penZUp); delay(penDelay); Zpos=Zmax; digitalWrite(15, LOW); digitalWrite(16, HIGH); if (verbose) { Serial.println("Pen up!"); } }// Lowers penvoid penDown() { penServo.write(penZDown); delay(penDelay); Zpos=Zmin; digitalWrite(15, HIGH); digitalWrite(16, LOW); if (verbose) { Serial.println("Pen down."); }} 
LibrariesArduino
// Adafruit Motor shield library// copyright Adafruit Industries LLC, 2009// this code is public domain, enjoy!#if (ARDUINO>=100) #include "Arduino.h"#else #if defined(__AVR__) #include  #endif #include "WProgram.h"#endif#include "AFMotor.h"static uint8_t latch_state;#if (MICROSTEPS ==8)uint8_t microstepcurve[] ={0, 50, 98, 142, 180, 212, 236, 250, 255};#elif (MICROSTEPS ==16)uint8_t microstepcurve[] ={0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};#endifAFMotorController::AFMotorController(void) { TimerInitalized =false;}void AFMotorController::enable(void) { // setup the latch /* LATCH_DDR |=_BV(LATCH); ENABLE_DDR |=_BV(ENABLE); CLK_DDR |=_BV(CLK); SER_DDR |=_BV(SER); */ pinMode(MOTORLATCH, OUTPUT); pinMode(MOTORENABLE, OUTPUT); pinMode(MOTORDATA, OUTPUT); pinMode(MOTORCLK, OUTPUT); latch_state =0; latch_tx(); // "reset" //ENABLE_PORT &=~_BV(ENABLE); // enable the chip outputs! digitalWrite(MOTORENABLE, LOW);}void AFMotorController::latch_tx(void) { uint8_t i; //LATCH_PORT &=~_BV(LATCH); digitalWrite(MOTORLATCH, LOW); //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); for (i=0; i<8; i++) { //CLK_PORT &=~_BV(CLK); digitalWrite(MOTORCLK, LOW); if (latch_state &_BV(7-i)) { //SER_PORT |=_BV(SER); digitalWrite(MOTORDATA, HIGH); } else { //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); } //CLK_PORT |=_BV(CLK); digitalWrite(MOTORCLK, HIGH); } //LATCH_PORT |=_BV(LATCH); digitalWrite(MOTORLATCH, HIGH);}static AFMotorController MC;/****************************************** MOTORS******************************************/inline void initPWM1(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) TCCR2A |=_BV(COM2A1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2a TCCR2B =freq &0x7; OCR2A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) TCCR1A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a TCCR1B =(freq &0x7) | _BV(WGM12); OCR1A =0;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(9, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase OC4CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC4RS =0x0000; OC4R =0x0000; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(10, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase OC5CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC5RS =0x0000; OC5R =0x0000; #else // If we are not using PWM for pin 11, then just do digital digitalWrite(11, LOW); #endif#else #error "This chip is not supported!"#endif #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) &&!defined(PIC32_USE_PIN10_FOR_M1_PWM) pinMode(11, OUTPUT); #endif}inline void setPWM1(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR1A =s;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Set the OC4 (pin 9) PMW duty cycle from 0 to 255 OC4RS =s; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Set the OC5 (pin 10) PMW duty cycle from 0 to 255 OC5RS =s; #else // If we are not doing PWM output for M1, then just use on/off if (s> 127) { digitalWrite(11, HIGH); } else { digitalWrite(11, LOW); } #endif#else #error "This chip is not supported!"#endif}inline void initPWM2(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2B (pin 3) TCCR2A |=_BV(COM2B1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2b TCCR2B =freq &0x7; OCR2B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 3 is now PE5 (OC3C) TCCR3A |=_BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c TCCR3B =(freq &0x7) | _BV(WGM12); OCR3C =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase OC1CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC1RS =0x0000; OC1R =0x0000;#else #error "This chip is not supported!"#endif pinMode(3, OUTPUT);}inline void setPWM2(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR3C =s;#elif defined(__PIC32MX__) // Set the OC1 (pin3) PMW duty cycle from 0 to 255 OC1RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM3(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A / PD6 (pin 6) TCCR0A |=_BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on OC0A //TCCR0B =freq &0x7; OCR0A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) TCCR4A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a TCCR4B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR4A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase OC3CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC3RS =0x0000; OC3R =0x0000;#else #error "This chip is not supported!"#endif pinMode(6, OUTPUT);}inline void setPWM3(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR4A =s;#elif defined(__PIC32MX__) // Set the OC3 (pin 6) PMW duty cycle from 0 to 255 OC3RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM4(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0B / PD5 (pin 5) TCCR0A |=_BV(COM0B1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on oc0a //TCCR0B =freq &0x7; OCR0B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 5 is now PE3 (OC3A) TCCR3A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a TCCR3B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR3A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase OC2CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC2RS =0x0000; OC2R =0x0000;#else #error "This chip is not supported!"#endif pinMode(5, OUTPUT);}inline void setPWM4(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR3A =s;#elif defined(__PIC32MX__) // Set the OC2 (pin 5) PMW duty cycle from 0 to 255 OC2RS =s;#else #error "This chip is not supported!"#endif}AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) { motornum =num; pwmfreq =freq; MC.enable(); switch (num) { case 1:latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B); // set both motor pins to 0 MC.latch_tx(); initPWM1(freq); pausa; case 2:latch_state &=~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // set both motor pins to 0 MC.latch_tx(); initPWM2(freq); pausa; case 3:latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B); // set both motor pins to 0 MC.latch_tx(); initPWM3(freq); pausa; case 4:latch_state &=~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // set both motor pins to 0 MC.latch_tx(); initPWM4(freq); pausa; }}void AF_DCMotor::run(uint8_t cmd) { uint8_t a, b; switch (motornum) { case 1:a =MOTOR1_A; b =MOTOR1_B; pausa; case 2:a =MOTOR2_A; b =MOTOR2_B; pausa; case 3:a =MOTOR3_A; b =MOTOR3_B; pausa; case 4:a =MOTOR4_A; b =MOTOR4_B; pausa; default:return; } switch (cmd) { case FORWARD:latch_state |=_BV(a); latch_state &=~_BV(b); MC.latch_tx(); pausa; case BACKWARD:latch_state &=~_BV(a); latch_state |=_BV(b); MC.latch_tx(); pausa; case RELEASE:latch_state &=~_BV(a); // A and B both low latch_state &=~_BV(b); MC.latch_tx(); pausa; }}void AF_DCMotor::setSpeed(uint8_t speed) { switch (motornum) { case 1:setPWM1(speed); pausa; case 2:setPWM2(speed); pausa; case 3:setPWM3(speed); pausa; case 4:setPWM4(speed); pausa; }}/****************************************** STEPPERS******************************************/AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) { MC.enable(); revsteps =steps; steppernum =num; currentstep =0; if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(11, OUTPUT); pinMode(3, OUTPUT); digitalWrite(11, HIGH); digitalWrite(3, HIGH); // use PWM for microstepping support initPWM1(STEPPER1_PWM_RATE); initPWM2(STEPPER1_PWM_RATE); setPWM1(255); setPWM2(255); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(5, OUTPUT); pinMode (6, SAÍDA); digitalWrite(5, HIGH); digitalWrite (6, ALTO); // use PWM for microstepping support // use PWM for microstepping support initPWM3(STEPPER2_PWM_RATE); initPWM4(STEPPER2_PWM_RATE); setPWM3(255); setPWM4(255); }}void AF_Stepper::setSpeed(uint16_t rpm) { usperstep =60000000 / ((uint32_t)revsteps * (uint32_t)rpm); steppingcounter =0;}void AF_Stepper::release(void) { if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); }}void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) { uint32_t uspers =usperstep; uint8_t ret =0; if (style ==INTERLEAVE) { uspers /=2; } else if (style ==MICROSTEP) { uspers /=MICROSTEPS; steps *=MICROSTEPS;#ifdef MOTORDEBUG Serial.print("steps ="); Serial.println(steps, DEC);#endif } while (steps--) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } if (style ==MICROSTEP) { while ((ret !=0) &&(ret !=MICROSTEPS)) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } }}uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) { uint8_t a, b, c, d; uint8_t ocrb, ocra; ocra =ocrb =255; if (steppernum ==1) { a =_BV(MOTOR1_A); b =_BV(MOTOR2_A); c =_BV(MOTOR1_B); d =_BV(MOTOR2_B); } else if (steppernum ==2) { a =_BV(MOTOR3_A); b =_BV(MOTOR4_A); c =_BV(MOTOR3_B); d =_BV(MOTOR4_B); } else {return 0; } // next determine what sort of stepping procedure we're up to if (style ==SINGLE) { if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next even step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==DOUBLE) { if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next odd step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==INTERLEAVE) { if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } if (style ==MICROSTEP) { if (dir ==FORWARD) { currentstep++; } else { // BACKWARDS currentstep--; } currentstep +=MICROSTEPS*4; currentstep %=MICROSTEPS*4; ocra =ocrb =0; if ( (currentstep>
=0) &&(currentstep 
=MICROSTEPS) &&(currentstep 
=MICROSTEPS*2) &&(currentstep 
=MICROSTEPS*3) &&(currentstep  #endif #include "WProgram.h"#endif#include "AFMotor.h"static uint8_t latch_state;#if (MICROSTEPS ==8)uint8_t microstepcurve[] ={0, 50, 98, 142, 180, 212, 236, 250, 255};#elif (MICROSTEPS ==16)uint8_t microstepcurve[] ={0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};#endifAFMotorController::AFMotorController(void) { TimerInitalized =false;}void AFMotorController::enable(void) { // setup the latch /* LATCH_DDR |=_BV(LATCH); ENABLE_DDR |=_BV(ENABLE); CLK_DDR |=_BV(CLK); SER_DDR |=_BV(SER); */ pinMode(MOTORLATCH, OUTPUT); pinMode(MOTORENABLE, OUTPUT); pinMode(MOTORDATA, OUTPUT); pinMode(MOTORCLK, OUTPUT); latch_state =0; latch_tx(); // "reset" //ENABLE_PORT &=~_BV(ENABLE); // enable the chip outputs! digitalWrite(MOTORENABLE, LOW);}void AFMotorController::latch_tx(void) { uint8_t i; //LATCH_PORT &=~_BV(LATCH); digitalWrite(MOTORLATCH, LOW); //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); for (i=0; i<8; i++) { //CLK_PORT &=~_BV(CLK); digitalWrite(MOTORCLK, LOW); if (latch_state &_BV(7-i)) { //SER_PORT |=_BV(SER); digitalWrite(MOTORDATA, HIGH); } else { //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); } //CLK_PORT |=_BV(CLK); digitalWrite(MOTORCLK, HIGH); } //LATCH_PORT |=_BV(LATCH); digitalWrite(MOTORLATCH, HIGH);}static AFMotorController MC;/****************************************** MOTORS******************************************/inline void initPWM1(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) TCCR2A |=_BV(COM2A1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2a TCCR2B =freq &0x7; OCR2A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) TCCR1A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a TCCR1B =(freq &0x7) | _BV(WGM12); OCR1A =0;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(9, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase OC4CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC4RS =0x0000; OC4R =0x0000; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(10, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase OC5CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC5RS =0x0000; OC5R =0x0000; #else // If we are not using PWM for pin 11, then just do digital digitalWrite(11, LOW); #endif#else #error "This chip is not supported!"#endif #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) &&!defined(PIC32_USE_PIN10_FOR_M1_PWM) pinMode(11, OUTPUT); #endif}inline void setPWM1(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR1A =s;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Set the OC4 (pin 9) PMW duty cycle from 0 to 255 OC4RS =s; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Set the OC5 (pin 10) PMW duty cycle from 0 to 255 OC5RS =s; #else // If we are not doing PWM output for M1, then just use on/off if (s> 127) { digitalWrite(11, HIGH); } else { digitalWrite(11, LOW); } #endif#else #error "This chip is not supported!"#endif}inline void initPWM2(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2B (pin 3) TCCR2A |=_BV(COM2B1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2b TCCR2B =freq &0x7; OCR2B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 3 is now PE5 (OC3C) TCCR3A |=_BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c TCCR3B =(freq &0x7) | _BV(WGM12); OCR3C =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase OC1CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC1RS =0x0000; OC1R =0x0000;#else #error "This chip is not supported!"#endif pinMode(3, OUTPUT);}inline void setPWM2(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR3C =s;#elif defined(__PIC32MX__) // Set the OC1 (pin3) PMW duty cycle from 0 to 255 OC1RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM3(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A / PD6 (pin 6) TCCR0A |=_BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on OC0A //TCCR0B =freq &0x7; OCR0A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) TCCR4A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a TCCR4B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR4A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase OC3CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC3RS =0x0000; OC3R =0x0000;#else #error "This chip is not supported!"#endif pinMode(6, OUTPUT);}inline void setPWM3(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR4A =s;#elif defined(__PIC32MX__) // Set the OC3 (pin 6) PMW duty cycle from 0 to 255 OC3RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM4(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0B / PD5 (pin 5) TCCR0A |=_BV(COM0B1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on oc0a //TCCR0B =freq &0x7; OCR0B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 5 is now PE3 (OC3A) TCCR3A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a TCCR3B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR3A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase OC2CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC2RS =0x0000; OC2R =0x0000;#else #error "This chip is not supported!"#endif pinMode(5, OUTPUT);}inline void setPWM4(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR3A =s;#elif defined(__PIC32MX__) // Set the OC2 (pin 5) PMW duty cycle from 0 to 255 OC2RS =s;#else #error "This chip is not supported!"#endif}AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) { motornum =num; pwmfreq =freq; MC.enable(); switch (num) { case 1:latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B); // set both motor pins to 0 MC.latch_tx(); initPWM1(freq); pausa; case 2:latch_state &=~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // set both motor pins to 0 MC.latch_tx(); initPWM2(freq); pausa; case 3:latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B); // set both motor pins to 0 MC.latch_tx(); initPWM3(freq); pausa; case 4:latch_state &=~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // set both motor pins to 0 MC.latch_tx(); initPWM4(freq); pausa; }}void AF_DCMotor::run(uint8_t cmd) { uint8_t a, b; switch (motornum) { case 1:a =MOTOR1_A; b =MOTOR1_B; pausa; case 2:a =MOTOR2_A; b =MOTOR2_B; pausa; case 3:a =MOTOR3_A; b =MOTOR3_B; pausa; case 4:a =MOTOR4_A; b =MOTOR4_B; pausa; default:return; } switch (cmd) { case FORWARD:latch_state |=_BV(a); latch_state &=~_BV(b); MC.latch_tx(); pausa; case BACKWARD:latch_state &=~_BV(a); latch_state |=_BV(b); MC.latch_tx(); pausa; case RELEASE:latch_state &=~_BV(a); // A and B both low latch_state &=~_BV(b); MC.latch_tx(); pausa; }}void AF_DCMotor::setSpeed(uint8_t speed) { switch (motornum) { case 1:setPWM1(speed); pausa; case 2:setPWM2(speed); pausa; case 3:setPWM3(speed); pausa; case 4:setPWM4(speed); pausa; }}/****************************************** STEPPERS******************************************/AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) { MC.enable(); revsteps =steps; steppernum =num; currentstep =0; if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(11, OUTPUT); pinMode(3, OUTPUT); digitalWrite(11, HIGH); digitalWrite(3, HIGH); // use PWM for microstepping support initPWM1(STEPPER1_PWM_RATE); initPWM2(STEPPER1_PWM_RATE); setPWM1(255); setPWM2(255); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(5, OUTPUT); pinMode (6, SAÍDA); digitalWrite(5, HIGH); digitalWrite (6, ALTO); // use PWM for microstepping support // use PWM for microstepping support initPWM3(STEPPER2_PWM_RATE); initPWM4(STEPPER2_PWM_RATE); setPWM3(255); setPWM4(255); }}void AF_Stepper::setSpeed(uint16_t rpm) { usperstep =60000000 / ((uint32_t)revsteps * (uint32_t)rpm); steppingcounter =0;}void AF_Stepper::release(void) { if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); }}void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) { uint32_t uspers =usperstep; uint8_t ret =0; if (style ==INTERLEAVE) { uspers /=2; } else if (style ==MICROSTEP) { uspers /=MICROSTEPS; steps *=MICROSTEPS;#ifdef MOTORDEBUG Serial.print("steps ="); Serial.println(steps, DEC);#endif } while (steps--) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } if (style ==MICROSTEP) { while ((ret !=0) &&(ret !=MICROSTEPS)) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } }}uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) { uint8_t a, b, c, d; uint8_t ocrb, ocra; ocra =ocrb =255; if (steppernum ==1) { a =_BV(MOTOR1_A); b =_BV(MOTOR2_A); c =_BV(MOTOR1_B); d =_BV(MOTOR2_B); } else if (steppernum ==2) { a =_BV(MOTOR3_A); b =_BV(MOTOR4_A); c =_BV(MOTOR3_B); d =_BV(MOTOR4_B); } else {return 0; } // next determine what sort of stepping procedure we're up to if (style ==SINGLE) { if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next even step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==DOUBLE) { if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next odd step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==INTERLEAVE) { if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } if (style ==MICROSTEP) { if (dir ==FORWARD) { currentstep++; } else { // BACKWARDS currentstep--; } currentstep +=MICROSTEPS*4; currentstep %=MICROSTEPS*4; ocra =ocrb =0; if ( (currentstep>
=0) &&(currentstep 
=MICROSTEPS) &&(currentstep 
=MICROSTEPS*2) &&(currentstep 
=MICROSTEPS*3) &&(currentstep  

Peças personalizadas e gabinetes

cnc_contour_SNa09InGkY.gm1 cnc_coppertop_PIxEVyoMWI.gtl

Esquemas


Processo de manufatura

  1. DIY LUMAZOID Arduino Music Visualiser
  2. Faça você mesmo voltímetro usando Arduino e Smartphone
  3. Faça você mesmo skate de realidade virtual
  4. Máquina CNC Triplo - Versão ATUALIZAÇÃO
  5. Mesa final do Zen Garden CNC
  6. Faça você mesmo Arduino RADIONICS Tratamento MMachine
  7. Máquina CNC
  8. Simulador de corrida de movimento 2D DIY
  9. Introdução à Usinagem Vertical ou CNC VMC
  10. O que é uma Mini Máquina VMC?