Verilog gerar bloco
A
generate
block permite multiplicar instâncias de módulo ou realizar instanciação condicional de qualquer módulo. Ele fornece a capacidade de o projeto ser construído com base nos parâmetros Verilog. Essas instruções são particularmente convenientes quando a mesma operação ou instância de módulo precisa ser repetida várias vezes ou se determinado código tiver que ser incluído condicionalmente com base em determinados parâmetros Verilog. Um
generate
o bloco não pode conter porta, parâmetro, specparam
declarações ou specify
blocos. No entanto, outros itens de módulo e outros blocos de geração são permitidos. Todas as instanciações geradas são codificadas dentro de um module
e entre as palavras-chave generate
e endgenerate
. As instanciações geradas podem ter módulos, atribuições contínuas,
always
ou initial
blocos e primitivos definidos pelo usuário. Existem dois tipos de construções de geração - loops e condicionais. - Gerar loop for
- Gerar caso contrário
- Gerar caso
Gerar loop for
Um meio somador será instanciado N vezes em outro módulo de design de nível superior chamado my_design usando um
generate
para construção de loop. A variável de loop deve ser declarada usando a palavra-chave genvar
que informa à ferramenta que esta variável deve ser usada especificamente durante a elaboração do bloco de geração.
// Design for a half-adder
module ha ( input a, b,
output sum, cout);
assign sum = a ^ b;
assign cout = a & b;
endmodule
// A top level design that contains N instances of half adder
module my_design
#(parameter N=4)
( input [N-1:0] a, b,
output [N-1:0] sum, cout);
// Declare a temporary loop variable to be used during
// generation and won't be available during simulation
genvar i;
// Generate for loop to instantiate N times
generate
for (i = 0; i < N; i = i + 1) begin
ha u0 (a[i], b[i], sum[i], cout[i]);
end
endgenerate
endmodule
Banco de teste
O parâmetro testbench é usado para controlar o número de instâncias de meio somador no projeto. Quando N for 2, my_design terá duas instâncias de meio somador.
module tb;
parameter N = 2;
reg [N-1:0] a, b;
wire [N-1:0] sum, cout;
// Instantiate top level design with N=2 so that it will have 2
// separate instances of half adders and both are given two separate
// inputs
my_design #(.N(N)) md( .a(a), .b(b), .sum(sum), .cout(cout));
initial begin
a <= 0;
b <= 0;
$monitor ("a=0x%0h b=0x%0h sum=0x%0h cout=0x%0h", a, b, sum, cout);
#10 a <= 'h2;
b <= 'h3;
#20 b <= 'h4;
#10 a <= 'h5;
end
endmodule
a[0] e b[0] fornecem a soma de saída[0] e cout[0] enquanto a[1] e b[1] fornecem a soma de saída[1] e cout[1].
Registro de simulação
ncsim> run a=0x0 b=0x0 sum=0x0 cout=0x0 a=0x2 b=0x3 sum=0x1 cout=0x2 a=0x2 b=0x0 sum=0x2 cout=0x0 a=0x1 b=0x0 sum=0x1 cout=0x0 ncsim: *W,RNQUIE: Simulation is complete. ncsim> exit
Veja que o RTL elaborado realmente tem duas instâncias de meio somador geradas pelo
generate
quadra. Gerar se
Abaixo está um exemplo usando um
if else
dentro de um generate
construir para selecionar entre duas implementações de multiplexadores diferentes. O primeiro design usa um assign
para implementar um mux enquanto o segundo design usa um case
declaração. Um parâmetro chamado USE_CASE é definido no módulo de design de nível superior para selecionar entre as duas opções.
// Design #1: Multiplexer design uses an "assign" statement to assign
// out signal
module mux_assign ( input a, b, sel,
output out);
assign out = sel ? a : b;
// The initial display statement is used so that
// we know which design got instantiated from simulation
// logs
initial
$display ("mux_assign is instantiated");
endmodule
// Design #2: Multiplexer design uses a "case" statement to drive
// out signal
module mux_case (input a, b, sel,
output reg out);
always @ (a or b or sel) begin
case (sel)
0 : out = a;
1 : out = b;
endcase
end
// The initial display statement is used so that
// we know which design got instantiated from simulation
// logs
initial
$display ("mux_case is instantiated");
endmodule
// Top Level Design: Use a parameter to choose either one
module my_design ( input a, b, sel,
output out);
parameter USE_CASE = 0;
// Use a "generate" block to instantiate either mux_case
// or mux_assign using an if else construct with generate
generate
if (USE_CASE)
mux_case mc (.a(a), .b(b), .sel(sel), .out(out));
else
mux_assign ma (.a(a), .b(b), .sel(sel), .out(out));
endgenerate
endmodule
Banco de teste
O Testbench instancia o módulo de nível superior my_design e define o parâmetro USE_CASE como 1 para que instancia o design usando
case
declaração.
module tb;
// Declare testbench variables
reg a, b, sel;
wire out;
integer i;
// Instantiate top level design and set USE_CASE parameter to 1 so that
// the design using case statement is instantiated
my_design #(.USE_CASE(1)) u0 ( .a(a), .b(b), .sel(sel), .out(out));
initial begin
// Initialize testbench variables
a <= 0;
b <= 0;
sel <= 0;
// Assign random values to DUT inputs with some delay
for (i = 0; i < 5; i = i + 1) begin
#10 a <= $random;
b <= $random;
sel <= $random;
$display ("i=%0d a=0x%0h b=0x%0h sel=0x%0h out=0x%0h", i, a, b, sel, out);
end
end
endmodule
Quando o parâmetro USE_CASE é 1, pode-se ver no log de simulação que o projeto do multiplexador usando
case
declaração é instanciada. E quando USE_CASE é zero, o projeto do multiplexador usando assign
declaração é instanciada. Isso é visível na instrução de exibição que é impressa no log de simulação. Registro de simulação
// When USE_CASE = 1 ncsim> run mux_case is instantiated i=0 a=0x0 b=0x0 sel=0x0 out=0x0 i=1 a=0x0 b=0x1 sel=0x1 out=0x1 i=2 a=0x1 b=0x1 sel=0x1 out=0x1 i=3 a=0x1 b=0x0 sel=0x1 out=0x0 i=4 a=0x1 b=0x0 sel=0x1 out=0x0 ncsim: *W,RNQUIE: Simulation is complete. // When USE_CASE = 0 ncsim> run mux_assign is instantiated i=0 a=0x0 b=0x0 sel=0x0 out=0x0 i=1 a=0x0 b=0x1 sel=0x1 out=0x0 i=2 a=0x1 b=0x1 sel=0x1 out=0x1 i=3 a=0x1 b=0x0 sel=0x1 out=0x1 i=4 a=0x1 b=0x0 sel=0x1 out=0x1 ncsim: *W,RNQUIE: Simulation is complete.
Gerar caso
Um caso de geração permite que módulos, blocos iniciais e sempre sejam instanciados em outro módulo com base em um
case
expressão para selecionar uma das muitas opções.
// Design #1: Half adder
module ha (input a, b,
output reg sum, cout);
always @ (a or b)
{cout, sum} = a + b;
initial
$display ("Half adder instantiation");
endmodule
// Design #2: Full adder
module fa (input a, b, cin,
output reg sum, cout);
always @ (a or b or cin)
{cout, sum} = a + b + cin;
initial
$display ("Full adder instantiation");
endmodule
// Top level design: Choose between half adder and full adder
module my_adder (input a, b, cin,
output sum, cout);
parameter ADDER_TYPE = 1;
generate
case(ADDER_TYPE)
0 : ha u0 (.a(a), .b(b), .sum(sum), .cout(cout));
1 : fa u1 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));
endcase
endgenerate
endmodule
Banco de teste
module tb;
reg a, b, cin;
wire sum, cout;
my_adder #(.ADDER_TYPE(0)) u0 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));
initial begin
a <= 0;
b <= 0;
cin <= 0;
$monitor("a=0x%0h b=0x%0h cin=0x%0h cout=0%0h sum=0x%0h",
a, b, cin, cout, sum);
for (int i = 0; i < 5; i = i + 1) begin
#10 a <= $random;
b <= $random;
cin <= $random;
end
end
endmodule
Observe que, como um meio somador é instanciado, cin não tem nenhum efeito nas saídas soma e cout.
Registro de simulação
ncsim> run Half adder instantiation a=0x0 b=0x0 cin=0x0 cout=00 sum=0x0 a=0x0 b=0x1 cin=0x1 cout=00 sum=0x1 a=0x1 b=0x1 cin=0x1 cout=01 sum=0x0 a=0x1 b=0x0 cin=0x1 cout=00 sum=0x1 ncsim: *W,RNQUIE: Simulation is complete.
Verilog