Primitivos Definidos pelo Usuário Verilog
Primitivas padrão Verilog como
nand
e not
pode nem sempre ser fácil ou suficiente para representar uma lógica complexa. Novos elementos primitivos chamados UDP ou primitivas definidas pelo usuário pode ser definido para modelar lógica combinacional ou sequencial. Todos os UDPs têm exatamente uma saída que pode ser 0, 1 ou X e nunca Z (não suportado). Qualquer entrada que tenha o valor Z será tratada como X.
Símbolos UDP Verilog
Primitivas definidas pelo usuário Verilog podem ser escritas no mesmo nível que module definições, mas nunca entre
module
e endmodule
. Eles podem ter muitas portas de entrada, mas sempre uma porta de saída, e as portas bidirecionais não são válidas. Todos os sinais de porta devem ser escalares, o que significa que eles devem ter 1 bit de largura. O comportamento do hardware é descrito como um primitivo tabela de estados que lista diferentes combinações possíveis de entradas e suas saídas correspondentes dentro de
table
e endtable
. Os valores dos sinais de entrada e saída são indicados com os seguintes símbolos. Símbolo | Comentários |
---|---|
0 | Lógica 0 |
1 | Lógica 1 |
x | Desconhecido, pode ser lógico 0 ou 1. Pode ser usado como entrada/saída ou estado atual de UDPs sequenciais |
? | Lógica 0, 1 ou x. Não pode ser saída de qualquer UDP |
- | Nenhuma alteração, permitida apenas na saída de um UDP |
ab | Mudança no valor de a para b onde a ou b é 0, 1 ou x |
* | Igual a ??, indica qualquer alteração no valor de entrada |
r | Igual a 01 -> borda de subida na entrada |
f | Igual a 10 -> borda descendente na entrada |
p | Potencial borda positiva na entrada; 0->1, 0->x ou x->1 |
n | Potencial borda de queda na entrada; ou 1->0, x->0, 1->x |
Exemplo de UDP Combinacional
// Output should always be the first signal in port list
primitive mux (out, sel, a, b);
output out;
input sel, a, b;
table
// sel a b out
0 1 ? : 1;
0 0 ? : 0;
1 ? 0 : 0;
1 ? 1 : 1;
x 0 0 : 0;
x 1 1 : 1;
endtable
endprimitive
Um
?
indica que o sinal pode ser 0, 1 ou x e não importa na decisão da saída final. Abaixo é mostrado um módulo testbench que instancia o UDP e aplica estímulos de entrada a ele.
module tb;
reg sel, a, b;
reg [2:0] dly;
wire out;
integer i;
// Instantiate the UDP - note that UDPs cannot
// be instantiated with port name connection
mux u_mux ( out, sel, a, b);
initial begin
a <= 0;
b <= 0;
$monitor("[T=%0t] a=%0b b=%0b sel=%0b out=%0b", $time, a, b, sel, out);
// Drive a, b, and sel after different random delays
for (i = 0; i < 10; i = i + 1) begin
dly = $random;
#(dly) a <= $random;
dly = $random;
#(dly) b <= $random;
dly = $random;
#(dly) sel <= $random;
end
end
endmodule
Registro de simulação xcelium> run [T=0] a=0 b=0 sel=x out=0 [T=4] a=1 b=0 sel=x out=x [T=5] a=1 b=1 sel=x out=1 [T=10] a=1 b=1 sel=1 out=1 [T=15] a=0 b=1 sel=1 out=1 [T=28] a=0 b=0 sel=1 out=0 [T=33] a=0 b=0 sel=0 out=0 [T=38] a=1 b=0 sel=0 out=1 [T=40] a=1 b=1 sel=0 out=1 [T=51] a=1 b=1 sel=1 out=1 [T=54] a=0 b=0 sel=1 out=0 [T=62] a=1 b=0 sel=1 out=0 [T=67] a=1 b=1 sel=1 out=1 [T=72] a=0 b=1 sel=1 out=1 [T=80] a=0 b=1 sel=0 out=0 [T=84] a=0 b=0 sel=0 out=0 [T=85] a=1 b=0 sel=0 out=1 xmsim: *W,RNQUIE: Simulation is complete.
Exemplo de UDP Sequencial
A lógica sequencial pode ser sensível ao nível ou sensível à borda e, portanto, existem dois tipos de UDPs sequenciais. A porta de saída também deve ser declarada como
reg
tipo dentro da definição UDP e pode ser inicializado opcionalmente dentro de um initial
declaração. UDPs sequenciais têm um campo adicional entre o campo de entrada e saída que é delimitado por um
:
que representa o estado atual. UDPs sensíveis ao nível
primitive d_latch (q, clk, d);
output q;
input clk, d;
reg q;
table
// clk d q q+
1 1 : ? : 1;
1 0 : ? : 0;
0 ? : ? : -;
endtable
endprimitive
Na tabela acima, um hífen
-
na última linha da tabela indica nenhuma alteração no valor de q+.
module tb;
reg clk, d;
reg [1:0] dly;
wire q;
integer i;
d_latch u_latch (q, clk, d);
always #10 clk = ~clk;
initial begin
clk = 0;
$monitor ("[T=%0t] clk=%0b d=%0b q=%0b", $time, clk, d, q);
#10; // To see the effect of X
for (i = 0; i < 50; i = i+1) begin
dly = $random;
#(dly) d <= $random;
end
#20 $finish;
end
endmodule
Registro de simulação xcelium> run [T=0] clk=0 d=x q=x [T=10] clk=1 d=1 q=1 [T=13] clk=1 d=0 q=0 [T=14] clk=1 d=1 q=1 [T=17] clk=1 d=0 q=0 [T=20] clk=0 d=1 q=0 [T=28] clk=0 d=0 q=0 [T=30] clk=1 d=1 q=1 [T=38] clk=1 d=0 q=0 [T=39] clk=1 d=1 q=1 [T=40] clk=0 d=1 q=1 [T=42] clk=0 d=0 q=1 [T=47] clk=0 d=1 q=1 [T=50] clk=1 d=0 q=0 [T=55] clk=1 d=1 q=1 [T=59] clk=1 d=0 q=0 [T=60] clk=0 d=0 q=0 [T=61] clk=0 d=1 q=0 [T=64] clk=0 d=0 q=0 [T=67] clk=0 d=1 q=0 [T=70] clk=1 d=0 q=0 [T=73] clk=1 d=1 q=1 [T=74] clk=1 d=0 q=0 [T=77] clk=1 d=1 q=1 [T=79] clk=1 d=0 q=0 [T=80] clk=0 d=0 q=0 [T=84] clk=0 d=1 q=0 [T=86] clk=0 d=0 q=0 [T=87] clk=0 d=1 q=0 [T=90] clk=1 d=1 q=1 [T=91] clk=1 d=0 q=0 [T=100] clk=0 d=0 q=0 [T=110] clk=1 d=0 q=0 Simulation complete via $finish(1) at time 111 NS + 0
UDPs sensíveis à borda
Um flip-flop D é modelado como uma primitiva definida pelo usuário Verilog no exemplo mostrado abaixo. Observe que a borda de subida do relógio é especificada por
01
ou 0?
primitive d_flop (q, clk, d);
output q;
input clk, d;
reg q;
table
// clk d q q+
// obtain output on rising edge of clk
(01) 0 : ? : 0;
(01) 1 : ? : 1;
(0?) 1 : 1 : 1;
(0?) 0 : 0 : 0;
// ignore negative edge of clk
(?0) ? : ? : -;
// ignore data changes on steady clk
? (??): ? : -;
endtable
endprimitive
No testbench, o UDP é instanciado e conduzido com valores de entrada aleatórios d após um número aleatório de relógios.
module tb;
reg clk, d;
reg [1:0] dly;
wire q;
integer i;
d_flop u_flop (q, clk, d);
always #10 clk = ~clk;
initial begin
clk = 0;
$monitor ("[T=%0t] clk=%0b d=%0b q=%0b", $time, clk, d, q);
#10; // To see the effect of X
for (i = 0; i < 20; i = i+1) begin
dly = $random;
repeat(dly) @(posedge clk);
d <= $random;
end
#20 $finish;
end
endmodule
Pode ser visto na imagem que a saída q segue a entrada d após 1 atraso de clock que é o comportamento desejado para um flip-flop D.
Registro de simulação
xcelium> run [T=0] clk=0 d=x q=x [T=10] clk=1 d=1 q=x [T=20] clk=0 d=1 q=x [T=30] clk=1 d=1 q=1 [T=40] clk=0 d=1 q=1 [T=50] clk=1 d=1 q=1 [T=60] clk=0 d=1 q=1 [T=70] clk=1 d=0 q=1 [T=80] clk=0 d=0 q=1 [T=90] clk=1 d=1 q=0 [T=100] clk=0 d=1 q=0 [T=110] clk=1 d=1 q=1 [T=120] clk=0 d=1 q=1 [T=130] clk=1 d=1 q=1 [T=140] clk=0 d=1 q=1 [T=150] clk=1 d=0 q=1 [T=160] clk=0 d=0 q=1 [T=170] clk=1 d=0 q=0 [T=180] clk=0 d=0 q=0 [T=190] clk=1 d=0 q=0 [T=200] clk=0 d=0 q=0 [T=210] clk=1 d=1 q=0 [T=220] clk=0 d=1 q=0 [T=230] clk=1 d=1 q=1 [T=240] clk=0 d=1 q=1 [T=250] clk=1 d=1 q=1 [T=260] clk=0 d=1 q=1 [T=270] clk=1 d=1 q=1 [T=280] clk=0 d=1 q=1 [T=290] clk=1 d=1 q=1 [T=300] clk=0 d=1 q=1 [T=310] clk=1 d=1 q=1 [T=320] clk=0 d=1 q=1 [T=330] clk=1 d=1 q=1 [T=340] clk=0 d=1 q=1 [T=350] clk=1 d=1 q=1 [T=360] clk=0 d=1 q=1 [T=370] clk=1 d=0 q=1 [T=380] clk=0 d=0 q=1 [T=390] clk=1 d=0 q=0 [T=400] clk=0 d=0 q=0 [T=410] clk=1 d=1 q=0 [T=420] clk=0 d=1 q=0 [T=430] clk=1 d=1 q=1 [T=440] clk=0 d=1 q=1 [T=450] clk=1 d=1 q=1 [T=460] clk=0 d=1 q=1 [T=470] clk=1 d=1 q=1 [T=480] clk=0 d=1 q=1 Simulation complete via $finish(1) at time 490 NS + 0
Verilog