Manufaturação industrial
Internet das coisas industrial | Materiais industriais | Manutenção e reparo de equipamentos | Programação industrial |
home  MfgRobots >> Manufaturação industrial >  >> Manufacturing Technology >> Processo de manufatura

Relógio baseado em RTC

Componentes e suprimentos

Arduino Nano R3
× 1
Relógio em tempo real (RTC)
Usei o módulo RTC baseado em ds1307. Torna o trabalho muito mais fácil. Mas você pode fazer um sozinho, é muito fácil.
× 1
Display LED de 4 dígitos e sete segmentos
× 1
cabeçalho feminino linha única
× 3
placa perfurada
obtenha isto se quiser soldar este projeto e torná-lo apresentável. Para facilitar a soldagem, obtenha uma placa de solda que tenha traços como uma placa de pão.
× 1
Fios de jumpers (genérico)
× 25
Cabeçalho masculino 40 posição 1 linha (0,1 ")
× 1

Ferramentas e máquinas necessárias

Ferro de soldar (genérico)
multímetro
Todo projeto precisa de um multímetro. Portanto invista em um par padrão, ele vai funcionar por pelo menos 4 anos e pode ser muito mais se você souber consertá-lo. Você precisará disso para verificar a conectividade de sua solda e para verificar a corrente puxada pelo circuito.

Aplicativos e serviços online

Arduino IDE
Arduino Fritzing

Sobre este projeto


Este é um relógio digital realmente simples, fácil de montar, criado com o IC RTC DS1307. Com display LCD. Ele simplesmente exibe a hora em um display de quatro dígitos e sete segmentos. O código também pode ser facilmente ajustado para fornecer funcionalidade adicional, como um alarme, tudo o que você precisa é um pouco de imaginação e engenhosidade. Este projeto foi feito apenas como um trampolim para coisas melhores e mais complicadas, além disso, eu queria fazer algo legal para colocar para expor no meu quarto.

Então, já foi dito, vou incluir todos os pequenos detalhes neste post, incluindo os problemas que encontrei ao soldá-lo no PCB e como resolvi esses problemas.





ETAPA 1:componentes


Módulo RTC

O chip DS1307 é realmente incrível, pois tem a capacidade de controlar o tempo mesmo durante o tempo de desligamento. É fácil fazer a interface com o Arduino e há várias bibliotecas disponíveis para trabalhar com este módulo. O RTC faz interface com o Arduino por meio do protocolo I2C. Não se preocupe com os detalhes do protocolo, os pinos A4 e A5 no Arduino nano são usados ​​para comunicação I2C.
  • SDA - A4
  • SCL - A5

Não precisaremos do pino DS para este projeto.

A única desvantagem é que não é tão preciso quanto gostaríamos. O chip é muito suscetível a desvios no tempo e muito facilmente se desvia do tempo real, dependendo da temperatura.

NOTA - Certifique-se de conectar os pinos GND e Vcc corretamente. O Vcc é colocado (no módulo) antes do pino GND. Eu conectei o meu na polaridade reversa várias vezes e ele esquenta muito rápido. Portanto, se você estiver alterando a conexão da polaridade ao contrário, basta tocar na célula tipo moeda ao ligá-la e desligá-la rapidamente se sentir que está ficando quente.





Registro de deslocamento (74HC595)

  • O registrador Shift 74HC595 foi o chip que tornou isso possível graças à técnica de multiplexação. Iniciantes não tenham medo deste termo assustador, é divertido e você ficará feliz por tê-lo aprendido.
  • O 595 tem 16 pinos e usaremos dois registradores de deslocamento para interagir com o display de 4 dígitos e 7 segmentos.
  • O primeiro registrador de deslocamento é usado para iluminar os segmentos e o segundo registrador de deslocamento é usado para selecionar qual dígito eu irei iluminar.
  • Graças à técnica de multiplexação, a alternância entre os dígitos é feita de forma rápida. Parece que todos os dígitos estão sendo exibidos ao mesmo tempo.

NOTA:Esses chips são bastante confiáveis, mas aconteceu de eu ter vários deles com defeito. Em alguns chips, Q0 e Q1 não funcionavam. Alguns tiveram o Q3 aterrado internamente (erro de construção). Os que tenho em meu projeto agora também não são totalmente perfeitos. Um deles está com defeito no Q7, então quando eu estava trabalhando com eles eu tinha que ter certeza de que minhas conexões estavam corretas, e quando eles ainda não estavam funcionando, eu verifiquei os pinos usando a função de continuidade do meu multímetro. Em suma, não reclamo, pois tudo significa aprender a superar pequenos obstáculos ao fazer um projeto.





Display de quatro dígitos e sete segmentos


Eu usei um segmento genérico de 4 dígitos ( Ânodo Comum ) Possui 12 pinos, a numeração começa na parte inferior esquerda e termina no pino superior esquerdo. Cada segmento é capaz de exibir um dígito e um ponto decimal. Portanto, como não tenho os dois pontos legais típicos dos relógios digitais, tive que me contentar com a vírgula decimal do segundo dígito. Esses são excelentes monitores quando seu objetivo principal é exibir números.

NOTA:Isso pode ser bastante complicado de trabalhar para iniciantes, uma vez que os segmentos a-g não estão na mesma linha. Tenha cuidado e não os conecte à fonte de 5 V sem qualquer resistor limitador de corrente.

Eu incluí um esquema para isso e é bastante autoexplicativo.

O esquema não tem o mesmo tipo de display que usei no projeto, então aqui estão as conexões de pino do registrador de deslocamento para o segmento.

Pino do segmento no. no pino de registro de deslocamento do display

A 11 15

B 7 1

C 4 2

D 2 3

E 1 4

F 10 5

G 5 6

Decimal 3 7

D1 12 15 (2º 595)

D2 9 1 (2º 595)

D3 8 2 (2º 595)

D4 6 3 (2º 595)

Este projeto é barato e fácil de fazer, mas requer um pouco de paciência e perseverança (isto é, se você estiver disposto a ir além para soldá-lo no PCB). Se você quiser apenas experimentar para se divertir, dificilmente levará 2 horas.

Por favor, dê seu feedback sobre como posso melhorar isso e se houver algo não mencionado claramente no post.

Código

  • Código do relógio
  • Defina a hora
  • RealTimeClockDS1307.cpp
  • Leia-me
  • RealTimeClockDS1307.h
  • outro arquivo
  • arquivos RTClib
  • library.properties (nome)
  • RTClib
  • RTClib
  • README.md
  • RTClib.cpp
  • RTClib.h
Código do relógio Arduino
O código usa a biblioteca RTC e a biblioteca I2C. Você precisa dessas bibliotecas para que o programa seja executado. Este programa é para exibição do tipo ânodo comum.
 #include  #include  #include  RTC_DS1307 RTC; int temp, inc, hours1, minut, add =11; int HORA, MINUTO, SEGUNDO; int latchPin =3; // pino 12 no 595 o3 3int dataPin =4; // pino 14 no 595 ou 4int clockPin =2; // pino 11 no 595 ou 2int shift =256; int unidades, dezenas, centenas, milhares; int x; int y; const int alarmHour =17; const int alarmMinute =26; void setup () {Serial.begin (9600 ); pinMode (latchPin, OUTPUT); pinMode (dataPin, OUTPUT); pinMode (clockPin, OUTPUT); pinMode (13, SAÍDA); Wire.begin (); RTC.begin (); if (! RTC.isrunning ()) {RTC.adjust (DateTime (__ DATE__, __TIME__)); }} void loop () {int temp =0, val =1, temp4; DateTime agora =RTC.now (); HORA =agora.horas (); MINUT =agora.minuto (); //Serial.println(MINUT); se (HORA <10) {centenas =HORA; milhares =HORA / 10; } senão se (HORA> =10 &&HORA <24) {centenas =HORA% 10; milhares =HORA / 10; } se (MINUT <=9) {unidades =MINUT; dezenas =MINUT / 10; } senão se (MINUT> 9 &&MINUT <=60) {unidades =MINUT% 10; dezenas =MINUT / 10; } switch (unidades) {case 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 192); digitalWrite (latchPin, HIGH); pausa; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 249); digitalWrite (latchPin, HIGH); pausa; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 164); digitalWrite (latchPin, HIGH); pausa; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 176); digitalWrite (latchPin, HIGH); pausa; case 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 153); digitalWrite (latchPin, HIGH); pausa; case 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 146); digitalWrite (latchPin, HIGH); pausa; case 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 130); digitalWrite (latchPin, HIGH); pausa; case 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 248); digitalWrite (latchPin, HIGH); pausa; case 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 128); digitalWrite (latchPin, HIGH); pausa; case 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 144); digitalWrite (latchPin, HIGH); pausa; } atraso (1); switch (dezenas) {case 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 192); digitalWrite (latchPin, HIGH); pausa; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 249); digitalWrite (latchPin, HIGH); pausa; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 164); digitalWrite (latchPin, HIGH); pausa; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 176); digitalWrite (latchPin, HIGH); pausa; case 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 153); digitalWrite (latchPin, HIGH); pausa; case 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 146); digitalWrite (latchPin, HIGH); pausa; } atraso (1); switch (centenas) {case 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 64); digitalWrite (latchPin, HIGH); pausa; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 121); digitalWrite (latchPin, HIGH); pausa; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 36); digitalWrite (latchPin, HIGH); pausa; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 48); digitalWrite (latchPin, HIGH); pausa; case 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 25); digitalWrite (latchPin, HIGH); pausa; case 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 18); digitalWrite (latchPin, HIGH); pausa; case 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 2); digitalWrite (latchPin, HIGH); pausa; case 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 120); digitalWrite (latchPin, HIGH); pausa; case 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 0); digitalWrite (latchPin, HIGH); pausa; case 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 16); digitalWrite (latchPin, HIGH); pausa; } atraso (1); switch (milhares) {case 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 192); digitalWrite (latchPin, HIGH); // atraso (500); pausa; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 249); digitalWrite (latchPin, HIGH); // atraso (500); pausa; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 164); digitalWrite (latchPin, HIGH); // atraso (500); pausa; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 176); digitalWrite (latchPin, HIGH); // atraso (500); pausa; case 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 153); digitalWrite (latchPin, HIGH); // atraso (500); pausa; case 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 146); digitalWrite (latchPin, HIGH); // atraso (500); pausa; case 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 130); digitalWrite (latchPin, HIGH); // atraso (500); pausa; case 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 248); digitalWrite (latchPin, HIGH); // atraso (500); pausa; case 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 128); digitalWrite (latchPin, HIGH); pausa; case 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 152); digitalWrite (latchPin, HIGH); pausa; } atraso (1); // seção de alarme if (HOUR ==alarmHour &&MINUT ==alarmMinute) {digitalWrite (13, HIGH); } else {digitalWrite (13, LOW); }} 
Defina a hora Arduino
uma vez que o ds1307 é suscetível a desviar-se da hora correta. Este programa permite definir a hora através do Monitor Serial. Quando você vir que a hora não está correta, basta inserir o módulo rtc no arduino e fazer o upload deste programa. Em seguida, entre no Monitor Serial e defina a data, mês, ano e hora corretos. Em seguida, basta fazer o upload do outro programa e a hora correta será exibida no display de 7 segmentos.
 / * RealTimeClockDS1307 - biblioteca para controlar um módulo RTC DS1307 Copyright (c) 2011 David H. Brown. Todos os direitos reservados. Muito obrigado a John Waters e Maurice Ribble por seu trabalho anterior e muito útil (mesmo que eu não tenha acabado usando nenhum de seus códigos):- http://combustory.com/wiki/index.php/RTC1307_ -_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Esta biblioteca é um software livre; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. Esta biblioteca é distribuída na esperança de que seja útil, mas SEM NENHUMA GARANTIA; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a GNU Lesser General Public License para obter mais detalhes. Você deve ter recebido uma cópia da GNU Lesser General Public License junto com esta biblioteca; se não, escreva para Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * / # include  #include  // RealTimeClock RTC; // =new RealTimeClock (); # define Display_Clock_Every_N_Seconds 1 # define Display_ShortHelp_Every_N_Seconds 25 // # define TEST_Squarewave // ​​# define TEST_StopStart // # define TEST_1224Switchint count =0; char formatado [] ="00-00 00:00:00x"; void setup () {// Wire.begin (); Serial.begin (9600);} void loop () {if (Serial.available ()) {processCommand (); } atraso (1000); RTC.readClock (); contagem ++; if (contagem% Display_Clock_Every_N_Seconds ==0) {Serial.print (contagem); Serial.print (":"); RTC.getFormatted (formatado); Serial.print (formatado); Serial.println (); } if (contar% Display_ShortHelp_Every_N_Seconds ==0) {Serial.println ("Enviar? para uma lista de comandos."); } #ifdef TEST_Squarewaveif (contagem% 10 ==0) {switch (contagem / 10% 6) {case 0:Serial.print ("Squarewave desativado (baixa impedância):"); RTC.sqwDisable (0); Serial.println ((int) RTC.readData (7)); pausa; caso 1:Serial.print ("Squarewave desativado (alta impedância):"); RTC.sqwDisable (1); Serial.println ((int) RTC.readData (7)); pausa; caso 2:Serial.println ("Squarewave habilitado em 1 Hz"); RTC.sqwEnable (RTC.SQW_1Hz); pausa; caso 3:Serial.println ("Squarewave habilitado em 4,096 kHz"); RTC.sqwEnable (RTC.SQW_4kHz); pausa; caso 4:Serial.println ("Squarewave habilitado em 8,192 kHz"); RTC.sqwEnable (RTC.SQW_8kHz); pausa; caso 5:Serial.println ("Squarewave habilitado em 32.768 kHz"); RTC.sqwEnable (RTC.SQW_32kHz); pausa; padrão:Serial.println ("Teste Squarewave não definido"); } // switch} # endif # ifdef TEST_StopStartif (contagem% 10 ==0) {if (! RTC.isStopped ()) {if (RTC.getSeconds () <45) {Serial.println ("Parando o relógio por 10 segundos "); RTC.stop (); } // se tivermos tempo suficiente} else {RTC.setSeconds (RTC.getSeconds () + 11); RTC.start (); Serial.println ("Adicionando 11 segundos e reiniciando o relógio"); }} // se em um múltiplo de 10 contagens # endif # ifdef TEST_1224Mudar if (contar% 10 ==0) {if (contar% 20 ==0) {Serial.println ("mudar para 12 horas"); RTC.switchTo12h (); RTC.setClock (); } else {Serial.println ("mudar para formato de 24 horas"); RTC.switchTo24h (); RTC.setClock (); }} #endif} void processCommand () {if (! Serial.available ()) {return; } comando char =Serial.read (); int in, in2; switch (comando) {case 'H':case 'h':in =SerialReadPosInt (); RTC.setHours (em); RTC.setClock (); Serial.print ("Configurando horas para"); Serial.println (in); pausa; case 'I':case 'i':in =SerialReadPosInt (); RTC.setMinutes (em); RTC.setClock (); Serial.print ("Configurando minutos para"); Serial.println (in); pausa; case 'S':case 's':in =SerialReadPosInt (); RTC.setSeconds (em); RTC.setClock (); Serial.print ("Configurando segundos para"); Serial.println (in); pausa; case 'Y':case 'y':in =SerialReadPosInt (); RTC.setYear (em); RTC.setClock (); Serial.print ("Configurando o ano para"); Serial.println (in); pausa; case 'M':case 'm':in =SerialReadPosInt (); RTC.setMonth (em); RTC.setClock (); Serial.print ("Configurando o mês para"); Serial.println (in); pausa; case 'D':case 'd':in =SerialReadPosInt (); RTC.setDate (em); RTC.setClock (); Serial.print ("Configurando data para"); Serial.println (in); pausa; case 'W':Serial.print ("Dia da semana é"); Serial.println ((int) RTC.getDayOfWeek ()); pausa; case 'w':in =SerialReadPosInt (); RTC.setDayOfWeek (em); RTC.setClock (); Serial.print ("Configurando o dia da semana para"); Serial.println (in); pausa; case 't':case 'T':if (RTC.is12hour ()) {RTC.switchTo24h (); Serial.println ("Mudando para o relógio de 24 horas."); } else {RTC.switchTo12h (); Serial.println ("Mudando para o relógio de 12 horas."); } RTC.setClock (); pausa; case 'A':case 'a':if (RTC.is12hour ()) {RTC.setAM (); RTC.setClock (); Serial.println ("Definir AM."); } else {Serial.println ("(Definir horas apenas no modo 24 horas.)"); } pausa; case 'P':case 'p':if (RTC.is12hour ()) {RTC.setPM (); RTC.setClock (); Serial.println ("Definir PM."); } else {Serial.println ("(Definir horas apenas no modo 24 horas.)"); } pausa; case 'q':RTC.sqwEnable (RTC.SQW_1Hz); Serial.println ("Saída de onda quadrada definida para 1 Hz"); pausa; caso 'Q':RTC.sqwDisable (0); Serial.println ("Saída de onda quadrada desativada (baixa)"); pausa; case 'z':RTC.start (); Serial.println ("O oscilador do relógio foi iniciado."); pausa; caso 'Z':RTC.stop (); Serial.println ("O oscilador do relógio parou."); pausa; case '>':in =SerialReadPosInt (); in2 =SerialReadPosInt (); RTC.writeData (in, in2); Serial.print ("Gravar no registro"); Serial.print (in); Serial.print ("o valor"); Serial.println (in2); pausa; case '<':in =SerialReadPosInt (); in2 =RTC.readData (in); Serial.print ("Ler do registro"); Serial.print (in); Serial.print ("o valor"); Serial.println (in2); pausa; padrão:Serial.println ("Comando desconhecido. Tente estes:"); Serial.println ("h ## - definir horas d ## - definir data"); Serial.println ("i ## - definir mInutos m ## - definir mês"); Serial.println ("s ## - definir segundos y ## - definir ano"); Serial.println ("w ## - definir dia arbitrário da semana"); Serial.println ("t - alternar modo de 24 horas"); Serial.println ("a - definir AM p - definir PM"); Serial.println (); Serial.println ("z - iniciar relógio Z - parar relógio"); Serial.println ("q - SQW / OUT =1 Hz Q - parar SQW / OUT"); Serial.println (); Serial.println ("> ##, ### - escrever no registro ## o valor ###"); Serial.println ("<## - leia o valor no registro ##"); } // liga o comando} // lê caracteres numéricos até que algo mais // ou nenhum dado esteja disponível em serial.int SerialReadPosInt () {int i =0; booleano feito =falso; while (Serial.available () &&! done) {char c =Serial.read (); if (c> ='0' &&c <='9') {i =i * 10 + (c-'0 '); } else {done =true; }} return i;} 
RealTimeClockDS1307.cpp C / C ++
Este é um dos arquivos de biblioteca do relógio de tempo real. Crie uma pasta chamada "RealTimeClockDS1307" e copie-a para esta pasta. Isso é tudo que você precisa fazer. Não há necessidade de compilá-lo.
 / * RealTimeClockDS1307 - biblioteca para controlar um módulo RTC DS1307 Copyright (c) 2011 David H. Brown. Todos os direitos reservados v0.92 Atualizado para Arduino 1.00; não testado novamente em versões anteriores Muito obrigado a John Waters e Maurice Ribble por seu trabalho anterior e muito útil (mesmo que eu não tenha usado nenhum de seus códigos):- http://combustory.com/wiki/index .php / RTC1307 _-_ Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Esta biblioteca é um software livre; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. Esta biblioteca é distribuída na esperança de que seja útil, mas SEM NENHUMA GARANTIA; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a GNU Lesser General Public License para obter mais detalhes. Você deve ter recebido uma cópia da GNU Lesser General Public License junto com esta biblioteca; se não, escreva para Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * / / ******************** *************************************************** ******** * Inclui **************************************** ****************************************/ # include "RealTimeClockDS1307.h" #include  / *********************************************** ********************************** * Definições ***************** *************************************************** ************ / # define DS1307_I2C_ADDRESS 0x68 // Este é o endereço I2C / ************************* *************************************************** *** * Construtores ********************************************* ********************************** / RealTimeClockDS1307 ::RealTimeClockDS1307 () {Wire.begin (); // NÃO deve tentar ler o relógio antes que //Wire.begin () não seja chamado; readClock () irá travar. // Felizmente, parece que você pode chamar Wire.begin () // várias vezes sem nenhum efeito adverso).} / *********************** *************************************************** ***** * API do usuário ****************************************** ************************************* // ***** CHIP LER / ESCREVER *** *** / void RealTimeClockDS1307 ::readClock () {// Reinicia o ponteiro de registro Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x00); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read (); _reg1_min =Wire.read (); _reg2_hour =Wire.read (); _reg3_day =Wire.read (); _reg4_date =Wire.read (); _reg5_month =Wire.read (); _reg6_ano =Wire.read (); _reg7_sqw =Wire.read ();} void RealTimeClockDS1307 ::setClock () {// para ser paranóico, vamos primeiro parar o relógio // para garantir que não haja rollovers enquanto // escrevemos:writeData (0,0x80); // agora, vamos escrever tudo * exceto * o segundo Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x01); Wire.write (_reg1_min); Wire.write (_reg2_hour); Wire.write (_reg3_day); Wire.write (_reg4_date); Wire.write (_reg5_month); Wire.write (_reg6_ano); Wire.endTransmission (); // agora, vamos escrever os segundos; não tivemos que controlar // se o relógio já estava funcionando, porque // _ reg0_sec já sabe o que queremos que seja. Isso // reiniciará o relógio à medida que escreve o novo valor de segundos. writeData (0, _reg0_sec); } void RealTimeClockDS1307 ::stop () {// "O bit 7 do registro 0 é o bit de parada do relógio (CH). // Quando este bit é definido como 1, o oscilador é desabilitado." _reg0_sec =_reg0_sec | 0x80; writeData (0, _reg0_sec);} void RealTimeClockDS1307 ::start () {// "O bit 7 do registro 0 é o bit de parada do relógio (CH). // Quando este bit é definido como 1, o oscilador é desabilitado." _reg0_sec =_reg0_sec &~ 0x80; writeData (0, _reg0_sec);} void RealTimeClockDS1307 ::writeData (byte regNo, valor do byte) {if (regNo> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.write (valor); Wire.endTransmission ();} void RealTimeClockDS1307 ::writeData (byte regNo, void * source, int length) {char * p =(char *) source; if (regNo> 0x3F || comprimento> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); para (int i =0; i  0x3F) {return 0xff; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, 1); retornar Wire.read ();} void RealTimeClockDS1307 ::readData (byte regNo, void * dest, comprimento interno) {char * p =(char *) dest; if (regNo> 0x3F || comprimento> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, comprimento); para (int i =0; i  3) {return; } // bit 4 é habilitado (0x10); // bit 7 é o estado de saída atual se desabilitado _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequência; writeData (0x07, _reg7_sqw);} void RealTimeClockDS1307 ::sqwDisable (boolean outputLevel) {// bit 7 0x80 output + bit 4 0x10 habilitar ambos para zero, // o OR com o booleano deslocado até o bit 7 _reg7_sqw =_reg7_sqw &~ 0x90 | (outputLevel <<7); writeData (0x07, _reg7_sqw); // nota:de acordo com a planilha de dados, "OUT (controle de saída):Este bit controla // o nível de saída do pino SQW / OUT quando a onda quadrada // saída é desabilitada. Se SQWE =0, o nível lógico no // O pino SQW / OUT é 1 se OUT =1 e é 0 se OUT =0. " // "O pino SQW / OUT é um dreno aberto e requer um // resistor externo de pull-up." // Vale a pena mencionar que na placa de fuga Sparkfun, // BOB-00099, um LED conectado ao pino SQW através de um resistor para // Vcc + 5V iluminado quando OUT =0 e estava escuro quando OUT =1, o / / oposto do que eu esperava até me lembrar que é // um ralo aberto (pesquise no Google se precisar). Basicamente, eles não // significam tanto um nível lógico (por exemplo, + 3,3V rel Gnd), mas sim // alto ou baixo * impeadance * para o solo (dreno). Portanto, High é basicamente // um interruptor aberto. Baixo se conecta ao solo.} / ***** GETTERS ****** / boolean RealTimeClockDS1307 ::is12hour () {// o modo de 12 horas tem o bit 6 do registro de hora definido para alto retorno ((_reg2_hour &0x40) ==0x40);} boolean RealTimeClockDS1307 ::isPM () {// se estiver no modo de 12 horas, mas 5 do registro de horas indica PM if (is12hour ()) {return ((_reg2_hour &0x20) ==0x20); } // caso contrário, consideremos qualquer hora com a hora> 11 como sendo PM:return (getHours ()> 11);} boolean RealTimeClockDS1307 ::isStopped () {// bit 7 do registro de segundos para o relógio quando retorna alto ((_reg0_sec &0x80) ==0x80);} int RealTimeClockDS1307 ::getHours () {if (is12hour ()) {// não inclui o bit 5, o indicador am / pm retorna bcdToDec (_reg2_hour &0x1f); } // bits 4-5 são dezenas de horas return bcdToDec (_reg2_hour &0x3f);} int RealTimeClockDS1307 ::getMinutes () {// pode mascarar com 0x7f, mas não deve precisar retornar bcdToDec (_reg1_min);} int RealTimeClockDS1307::getSeconds () {// precisa mascarar o bit 7 de início / parada do oscilador return bcdToDec (_reg0_sec &0x7f);} int RealTimeClockDS1307 ::getYear () {return bcdToDec (_reg6_year);} int RealTimeClockDS1307 ::getMonth () {// pode mascarar com 0x1f, mas não deve precisar retornar bcdToDec (_reg5_month);} int RealTimeClockDS1307 ::getDate () {// pode mascarar com 0x3f, mas não deve precisar retornar bcdToDec (_reg4_date);} int RealTimeClockDS1307 ::getDay ( ){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
ReadmeClojure
Copy this also into the same folder you created named "RealTimeClockDS1307".
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RealTimeClockDS1307.hC/C++
This is the main header file of the real time clock. Copy this also into the folder you previously created named "RealTimeClockDS1307". Now you have all the files for the Real Time Clock. Enter the arduino ide and under the 'Sketch' menu click on the 'include library' option and then search your folder under the 'Add .ZIP Library". This will do the trick and you will now be able to set the time in the RTC module.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
another fileC/C++
add this to the 'RealTimeClockDS1307' folder.
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
RTClib filesC#
create a folder named 'RTClib' and add the following files into it
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
library.properties(name)C/C++
add this to the RTClib folder
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RTClibC/C++
add this to the RTClib folder
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /****************************************************************************** * Includes ******************************************************************************/#include "RealTimeClockDS1307.h"#include /****************************************************************************** * Definitions ******************************************************************************/#define DS1307_I2C_ADDRESS 0x68 // This is the I2C address/****************************************************************************** * Constructors ******************************************************************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //must NOT attempt to read the clock before //Wire.begin() has not been called; readClock() will hang. //Fortunately, it seems that you can call Wire.begin() //multiple times with no adverse effect).} /****************************************************************************** * User API ******************************************************************************//***** CHIP READ/WRITE ******/void RealTimeClockDS1307::readClock(){ // Reset the register pointer Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x00); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read(); _reg1_min =Wire.read(); _reg2_hour =Wire.read(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Wire.read(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //to be paranoid, we're going to first stop the clock //to ensure we don't have rollovers while we're //writing:writeData(0,0x80); //now, we'll write everything *except* the second Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_month); Wire.write(_reg6_year); Wire.endTransmission (); //now, we'll write the seconds; we didn't have to keep //track of whether the clock was already running, because //_reg0_sec already knows what we want it to be. This //will restart the clock as it writes the new seconds value. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.write(value); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, length); for(int i=0; i 3) { return; } //bit 4 is enable (0x10); //bit 7 is current output state if disabled _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequency; writeData(0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 enable both to zero, //the OR with the boolean shifted up to bit 7 _reg7_sqw =_reg7_sqw &~0x90 | (outputLevel <<7); writeData(0x07, _reg7_sqw); //note:per the data sheet, "OUT (Output control):This bit controls //the output level of the SQW/OUT pin when the square wave //output is disabled. If SQWE =0, the logic level on the //SQW/OUT pin is 1 if OUT =1 and is 0 if OUT =0." //"The SQW/OUT pin is open drain and requires an external //pull-up resistor." //It is worth mentioning that on the Sparkfun breakout board, //BOB-00099, a LED connected to the SQW pin through a resistor to //Vcc+5V illuminated when OUT=0 and was dark when OUT=1, the //opposite of what I expected until I remembered that it is //an open drain (google it if you need to). Basically, they don't //so much mean a logic level (e.g., +3.3V rel Gnd) as they mean //high or low *impeadance* to ground (drain). So High is basically //an open switch. Low connects to ground.}/***** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode has bit 6 of the hour register set high return ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //if in 12-hour mode, but 5 of the hour register indicates PM if(is12hour()) { return ((_reg2_hour &0x20) ==0x20); } //otherwise, let's consider any time with the hour>11 to be PM:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 of the seconds register stopps the clock when high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //do not include bit 5, the am/pm indicator return bcdToDec(_reg2_hour &0x1f); } //bits 4-5 are tens of hours return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //could mask with 0x7f but shouldn't need to return bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //need to mask oscillator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ //could mask with 0x1f but shouldn't need to return bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //could mask with 0x3f but shouldn't need to return bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay(){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
RTClibC/C++
add this to the RTClib folder. Now you have all the necessary files for the RTClib. Now do the same as I told you with the 'RealTimeClockDS1307' library file.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; você pode redistribuí-lo e / ou modificá-lo sob os termos da GNU Lesser General Public License conforme publicada pela Free Software Foundation; tanto a versão 2.1 da Licença, ou (por sua opção) qualquer versão posterior. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; sem mesmo a garantia implícita de COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
README.mdC/C++
add this to the RTClib library
This is a fork of JeeLab's fantastic real time clock library for Arduino.For details on using this library with an RTC module like the DS1307, see the guide at:https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overviewTo download. click the DOWNLOADS button to the right, and rename the uncompressed folder RTClib.Place the RTClib folder in your *arduinosketchfolder*/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE.## CompatibilityMCU | Tested Works | Doesn't Work | Not Tested | Notes------------------ | :----------:| :----------:| :---------:| -----Atmega328 @ 16MHz | X | | | Atmega328 @ 12MHz | X | | | Atmega32u4 @ 16MHz | X | | | Use SDA/SCL on pins D3 & D2Atmega32u4 @ 8MHz | X | | | Use SDA/SCL on pins D3 & D2ESP8266 | X | | | SDA/SCL default to pins 4 & 5 but any two pins can be assigned as SDA/SCL using Wire.begin(SDA,SCL)Atmega2560 @ 16MHz | X | | | Use SDA/SCL on Pins 20 & 21ATSAM3X8E | X | | | Use SDA1 and SCL1ATSAM21D | X | | | ATtiny85 @ 16MHz | X | | | ATtiny85 @ 8MHz | X | | | Intel Curie @ 32MHz | | | X | STM32F2 | | | X | * ATmega328 @ 16MHz :Arduino UNO, Adafruit Pro Trinket 5V, Adafruit Metro 328, Adafruit Metro Mini * ATmega328 @ 12MHz :Adafruit Pro Trinket 3V * ATmega32u4 @ 16MHz :Arduino Leonardo, Arduino Micro, Arduino Yun, Teensy 2.0 * ATmega32u4 @ 8MHz :Adafruit Flora, Bluefruit Micro * ESP8266 :Adafruit Huzzah * ATmega2560 @ 16MHz :Arduino Mega * ATSAM3X8E :Arduino Due * ATSAM21D :Arduino Zero, M0 Pro * ATtiny85 @ 16MHz :Adafruit Trinket 5V * ATtiny85 @ 8MHz :Adafruit Gemma, Arduino Gemma, Adafruit Trinket 3V
RTClib.cppC/C++
name it as above and add it to the RTClib library
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#include #include "RTClib.h"#ifdef __AVR__ #include #elif defined(ESP8266) #include #elif defined(ARDUINO_ARCH_SAMD)// nothing special needed#elif defined(ARDUINO_SAM_DUE) #define PROGMEM #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define Wire Wire1#endif#if (ARDUINO>=100) #include  // capital A so it is error prone on case-sensitive filesystems // Macro to deal with the difference in I2C write functions from old and new Arduino versions. #define _I2C_WRITE write #define _I2C_READ read#else #include  #define _I2C_WRITE send #define _I2C_READ receive#endifstatic uint8_t read_i2c_register(uint8_t addr, uint8_t reg) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire.endTransmission (); Wire.requestFrom(addr, (byte)1); return Wire._I2C_READ();}static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire._I2C_WRITE((byte)val); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// utility code, some of this could be exposed in the DateTime API if neededconst uint8_t daysInMonth [] PROGMEM ={ 31,28,31,30,31,30,31,31,30,31,30,31 };// number of days since 2000/01/01, valid for 2001..2099static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) { if (y>=2000) y -=2000; uint16_t days =d; for (uint8_t i =1; i  2 &&y % 4 ==0) ++days; return days + 365 * y + (y + 3) / 4 - 1;}static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) { return ((days * 24L + h) * 60 + m) * 60 + s;}////////////////////////////////////////////////////////////////////////////////// DateTime implementation - ignores time zones and DST changes// NOTE:also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_secondDateTime::DateTime (uint32_t t) { t -=SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970 ss =t % 60; t /=60; mm =t % 60; t /=60; hh =t % 24; uint16_t days =t / 24; uint8_t leap; for (yOff =0;; ++yOff) { leap =yOff % 4 ==0; if (days <365 + leap) break; days -=365 + leap; } for (m =1;; ++m) { uint8_t daysPerMonth =pgm_read_byte(daysInMonth + m - 1); if (leap &&m ==2) ++daysPerMonth; if (days =2000) year -=2000; yOff =year; m =month; d =day; hh =hour; mm =min; ss =sec;}DateTime::DateTime (const DateTime©):yOff(copy.yOff), m(copy.m), d(copy.d), hh(copy.hh), mm(copy.mm), ss(copy.ss){}static uint8_t conv2d(const char* p) { uint8_t v =0; if ('0' <=*p &&*p <='9') v =*p - '0'; return 10 * v + *++p - '0';}// A convenient constructor for using "the compiler's time":// DateTime now (__DATE__, __TIME__);// NOTE:using F() would further reduce the RAM footprint, see below.DateTime::DateTime (const char* date, const char* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" yOff =conv2d(date + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (date[0]) { case 'J':m =date[1] =='a' ? 1 :m =date[2] =='n' ? 6 :7; pausa; case 'F':m =2; pausa; case 'A':m =date[2] =='r' ? 4 :8; pausa; case 'M':m =date[2] =='r' ? 3 :5; pausa; case 'S':m =9; pausa; case 'O':m =10; pausa; case 'N':m =11; pausa; case 'D':m =12; pausa; } d =conv2d(date + 4); hh =conv2d(time); mm =conv2d(time + 3); ss =conv2d(time + 6);}// A convenient constructor for using "the compiler's time":// This version will save RAM by using PROGMEM to store it by using the F macro.// DateTime now (F(__DATE__), F(__TIME__));DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" char buff[11]; memcpy_P(buff, date, 11); yOff =conv2d(buff + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (buff[0]) { case 'J':m =buff[1] =='a' ? 1 :m =buff[2] =='n' ? 6 :7; pausa; case 'F':m =2; pausa; case 'A':m =buff[2] =='r' ? 4 :8; pausa; case 'M':m =buff[2] =='r' ? 3 :5; pausa; case 'S':m =9; pausa; case 'O':m =10; pausa; case 'N':m =11; pausa; case 'D':m =12; pausa; } d =conv2d(buff + 4); memcpy_P(buff, time, 8); hh =conv2d(buff); mm =conv2d(buff + 3); ss =conv2d(buff + 6);}uint8_t DateTime::dayOfTheWeek() const { uint16_t day =date2days(yOff, m, d); return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6}uint32_t DateTime::unixtime(void) const { uint32_t t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); t +=SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000 return t;}long DateTime::secondstime(void) const { long t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); return t;}DateTime DateTime::operator+(const TimeSpan&span) { return DateTime(unixtime()+span.totalseconds());}DateTime DateTime::operator-(const TimeSpan&span) { return DateTime(unixtime()-span.totalseconds());}TimeSpan DateTime::operator-(const DateTime&right) { return TimeSpan(unixtime()-right.unixtime());}////////////////////////////////////////////////////////////////////////////////// TimeSpan implementationTimeSpan::TimeSpan (int32_t seconds):_seconds(seconds){}TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):_seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds){}TimeSpan::TimeSpan (const TimeSpan©):_seconds(copy._seconds){}TimeSpan TimeSpan::operator+(const TimeSpan&right) { return TimeSpan(_seconds+right._seconds);}TimeSpan TimeSpan::operator-(const TimeSpan&right) { return TimeSpan(_seconds-right._seconds);}////////////////////////////////////////////////////////////////////////////////// RTC_DS1307 im plementationstatic uint8_t bcd2bin (uint8_t val) { return val - 6 * (val>> 4); }static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }boolean RTC_DS1307::begin(void) { Wire.begin(); return true;}uint8_t RTC_DS1307::isrunning(void) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS1307_ADDRESS, 1); uint8_t ss =Wire._I2C_READ(); return !(ss>>7);}void RTC_DS1307::adjust(const DateTime&dt) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission();}DateTime RTC_DS1307::now() { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS1307_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() { int mode; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire.endTransmission (); Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire._I2C_WRITE(mode); Wire.endTransmission();}void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) { int addrByte =DS1307_NVRAM + address; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(addrByte); Wire.endTransmission (); Wire.requestFrom((uint8_t) DS1307_ADDRESS, size); for (uint8_t pos =0; pos >=3; mode &=0x7; return static_cast(mode);}void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) { Wire.beginTransmission(PCF8523_ADDRESS); Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL); Wire._I2C_WRITE(mode <<3); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// RTC_DS3231 implementationboolean RTC_DS3231::begin(void) { Wire.begin(); return true;}bool RTC_DS3231::lostPower(void) { return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG)>> 7);}void RTC_DS3231::adjust(const DateTime&dt) { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission (); uint8_t statreg =read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG); statreg &=~0x80; // flip OSF bit write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);}DateTime RTC_DS3231::now() { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS3231_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() { int mode; Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE(DS3231_CONTROL); Wire.endTransmission (); Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) { uint8_t ctrl; ctrl =read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL); ctrl &=~0x04; // turn off INTCON ctrl &=~0x18; // set freq bits to 0 if (mode ==DS3231_OFF) { ctrl |=0x04; // turn on INTCN } else { ctrl |=mode; } write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl); //Serial.println( read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL), HEX);}
RTClib.hC/C++
that's the name. add it to the RTClib library. Now you have all the files for the RTClib library. Do the same steps to add this to the arduino libraries.
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#ifndef _RTCLIB_H_#define _RTCLIB_H_#include class TimeSpan;#define PCF8523_ADDRESS 0x68#define PCF8523_CLKOUTCONTROL 0x0F#define PCF8523_CONTROL_3 0x02#define DS1307_ADDRESS 0x68#define DS1307_CONTROL 0x07#define DS1307_NVRAM 0x08#define DS3231_ADDRESS 0x68#define DS3231_CONTROL 0x0E#define DS3231_STATUSREG 0x0F#define SECONDS_PER_DAY 86400L#define SECONDS_FROM_1970_TO_2000 946684800// Simple general-purpose date/time class (no TZ / DST / leap second handling!)class DateTime {public:DateTime (uint32_t t =0); DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour =0, uint8_t min =0, uint8_t sec =0); DateTime (const DateTime©); DateTime (const char* date, const char* time); DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time); uint16_t year() const { return 2000 + yOff; } uint8_t month() const { return m; } uint8_t day() const { return d; } uint8_t hour() const { return hh; } uint8_t minute() const { return mm; } uint8_t second() const { return ss; } uint8_t dayOfTheWeek() const; // 32-bit times as seconds since 1/1/2000 long secondstime() const; // 32-bit times as seconds since 1/1/1970 uint32_t unixtime(void) const; DateTime operator+(const TimeSpan&span); DateTime operator-(const TimeSpan&span); TimeSpan operator-(const DateTime&right);protected:uint8_t yOff, m, d, hh, mm, ss;};// Timespan which can represent changes in time with seconds accuracy.class TimeSpan {public:TimeSpan (int32_t seconds =0); TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds); TimeSpan (const TimeSpan©); int16_t days() const { return _seconds / 86400L; } int8_t hours() const { return _seconds / 3600 % 24; } int8_t minutes() const { return _seconds / 60 % 60; } int8_t seconds() const { return _seconds % 60; } int32_t totalseconds() const { return _seconds; } TimeSpan operator+(const TimeSpan&right); TimeSpan operator-(const TimeSpan&right);protected:int32_t _seconds;};// RTC based on the DS1307 chip connected via I2C and the Wire libraryenum Ds1307SqwPinMode { OFF =0x00, ON =0x80, SquareWave1HZ =0x10, SquareWave4kHz =0x11, SquareWave8kHz =0x12, SquareWave32kHz =0x13 };class RTC_DS1307 {public:boolean begin(void); static void adjust(const DateTime&dt); uint8_t isrunning(void); static DateTime now(); static Ds1307SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds1307SqwPinMode mode); uint8_t readnvram(uint8_t address); void readnvram(uint8_t* buf, uint8_t size, uint8_t address); void writenvram(uint8_t address, uint8_t data); void writenvram(uint8_t address, uint8_t* buf, uint8_t size);};// RTC based on the DS3231 chip connected via I2C and the Wire libraryenum Ds3231SqwPinMode { DS3231_OFF =0x01, DS3231_SquareWave1Hz =0x00, DS3231_SquareWave1kHz =0x08, DS3231_SquareWave4kHz =0x10, DS3231_SquareWave8kHz =0x18 };class RTC_DS3231 {public:boolean begin(void); static void adjust(const DateTime&dt); bool lostPower(void); static DateTime now(); static Ds3231SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds3231SqwPinMode mode);};// RTC based on the PCF8523 chip connected via I2C and the Wire libraryenum Pcf8523SqwPinMode { PCF8523_OFF =7, PCF8523_SquareWave1HZ =6, PCF8523_SquareWave32HZ =5, PCF8523_SquareWave1kHz =4, PCF8523_SquareWave4kHz =3, PCF8523_SquareWave8kHz =2, PCF8523_SquareWave16kHz =1, PCF8523_SquareWave32kHz =0 };class RTC_PCF8523 {public:boolean begin(void); void adjust(const DateTime&dt); boolean initialized(void); static DateTime now(); Pcf8523SqwPinMode readSqwPinMode(); void writeSqwPinMode(Pcf8523SqwPinMode mode);};// RTC using the internal millis() clock, has to be initialized before use// NOTE:this clock won't be correct once the millis() timer rolls over (>49d?)class RTC_Millis {public:static void begin(const DateTime&dt) { adjust(dt); } static void adjust(const DateTime&dt); static DateTime now();protected:static long offset;};#endif // _RTCLIB_H_

Esquemas

This is the schematic of the project. 7segmentClock.fzz

Processo de manufatura

  1. Tabua de passar
  2. Relógio de cuco
  3. Placa de circuito impresso
  4. Prancha de surf
  5. Como fazer uma plataforma de robô Arduino + Raspberry Pi
  6. Placa RaspiRobot V2
  7. Relógio de visão pov do Arduino
  8. Relógio espelho infinito
  9. Há mais de um motivo para fazer uma placa de circuito impresso impecável
  10. Entendendo a configuração do mecanismo