MATLAB - Integração
A integração lida com dois tipos de problemas essencialmente diferentes.
-
No primeiro tipo, a derivada de uma função é dada e queremos encontrar a função. Portanto, basicamente invertemos o processo de diferenciação. Este processo inverso é conhecido como antidiferenciação, ou encontrar a função primitiva, ou encontrar uma integral indefinida .
-
O segundo tipo de problema envolve somar um número muito grande de quantidades muito pequenas e então tomar um limite à medida que o tamanho das quantidades se aproxima de zero, enquanto o número de termos tende ao infinito. Este processo leva à definição da integral definida .
Integrais definidas são usadas para encontrar área, volume, centro de gravidade, momento de inércia, trabalho realizado por uma força e em várias outras aplicações.
Encontrando a integral indefinida usando o MATLAB
Por definição, se a derivada de uma função f(x) é f'(x), então dizemos que uma integral indefinida de f'(x) em relação a x é f(x). Por exemplo, como a derivada (em relação a x) de x 2 é 2x, podemos dizer que uma integral indefinida de 2x é x 2 .
Em símbolos -
f'(x 2 ) =2x , Portanto,
∫ 2xdx =x 2 .
A integral indefinida não é única, porque a derivada de x 2 + c, para qualquer valor de uma constante c, também será 2x.
Isso é expresso em símbolos como -
∫ 2xdx =x 2 + c .
Onde, c é chamado de 'constante arbitrária'.
O MATLAB fornece um int comando para calcular integral de uma expressão. Para derivar uma expressão para a integral indefinida de uma função, escrevemos −
int(f);
Por exemplo, do nosso exemplo anterior -
syms x int(2*x)
O MATLAB executa a instrução acima e retorna o seguinte resultado -
ans = x^2
Exemplo 1
Neste exemplo, vamos encontrar a integral de algumas expressões comumente usadas. Crie um arquivo de script e digite o seguinte código nele -
syms x n int(sym(x^n)) f = 'sin(n*t)' int(sym(f)) syms a t int(a*cos(pi*t)) int(a^x)
Quando você executa o arquivo, ele exibe o seguinte resultado -
ans = piecewise([n == -1, log(x)], [n ~= -1, x^(n + 1)/(n + 1)]) f = sin(n*t) ans = -cos(n*t)/n ans = (a*sin(pi*t))/pi ans = a^x/log(a)
Exemplo 2
Crie um arquivo de script e digite o seguinte código nele -
syms x n int(cos(x)) int(exp(x)) int(log(x)) int(x^-1) int(x^5*cos(5*x)) pretty(int(x^5*cos(5*x))) int(x^-5) int(sec(x)^2) pretty(int(1 - 10*x + 9 * x^2)) int((3 + 5*x -6*x^2 - 7*x^3)/2*x^2) pretty(int((3 + 5*x -6*x^2 - 7*x^3)/2*x^2))
Observe que o bonito A função retorna uma expressão em um formato mais legível.
Quando você executa o arquivo, ele exibe o seguinte resultado -
ans = sin(x) ans = exp(x) ans = x*(log(x) - 1) ans = log(x) ans = (24*cos(5*x))/3125 + (24*x*sin(5*x))/625 - (12*x^2*cos(5*x))/125 + (x^4*cos(5*x))/5 - (4*x^3*sin(5*x))/25 + (x^5*sin(5*x))/5 2 4 24 cos(5 x) 24 x sin(5 x) 12 x cos(5 x) x cos(5 x) ----------- + ------------- - -------------- + ------------ 3125 625 125 5 3 5 4 x sin(5 x) x sin(5 x) ------------- + ----------- 25 5 ans = -1/(4*x^4) ans = tan(x) 2 x (3 x - 5 x + 1) ans = - (7*x^6)/12 - (3*x^5)/5 + (5*x^4)/8 + x^3/2 6 5 4 3 7 x 3 x 5 x x - ---- - ---- + ---- + -- 12 5 8 2
Encontrando a integral definida usando o MATLAB
Por definição, integral definida é basicamente o limite de uma soma. Usamos integrais definidas para encontrar áreas como a área entre uma curva e o eixo x e a área entre duas curvas. As integrais definidas também podem ser usadas em outras situações, onde a quantidade necessária pode ser expressa como o limite de uma soma.
O int A função pode ser usada para integração definida passando os limites sobre os quais você deseja calcular a integral.
Calcular
nós escrevemos,
int(x, a, b)
Por exemplo, para calcular o valor de escrevemos −
int(x, 4, 9)
O MATLAB executa a instrução acima e retorna o seguinte resultado -
ans = 65/2
A seguir está o equivalente de oitava do cálculo acima -
pkg load symbolic symbols x = sym("x"); f = x; c = [1, 0]; integral = polyint(c); a = polyval(integral, 9) - polyval(integral, 4); display('Area: '), disp(double(a));
Octave executa o código e retorna o seguinte resultado -
Area: 32.500
Uma solução alternativa pode ser dada usando a função quad() fornecida pelo Octave da seguinte forma −
pkg load symbolic symbols f = inline("x"); [a, ierror, nfneval] = quad(f, 4, 9); display('Area: '), disp(double(a));
Octave executa o código e retorna o seguinte resultado -
Area: 32.500
Exemplo 1
Vamos calcular a área entre o eixo x e a curva y =x 3 −2x+5 e as ordenadas x =1 e x =2.
A área necessária é dada por -
Crie um arquivo de script e digite o seguinte código -
f = x^3 - 2*x +5; a = int(f, 1, 2) display('Area: '), disp(double(a));
Quando você executa o arquivo, ele exibe o seguinte resultado -
a = 23/4 Area: 5.7500
A seguir está o equivalente de oitava do cálculo acima -
pkg load symbolic symbols x = sym("x"); f = x^3 - 2*x +5; c = [1, 0, -2, 5]; integral = polyint(c); a = polyval(integral, 2) - polyval(integral, 1); display('Area: '), disp(double(a));
Octave executa o código e retorna o seguinte resultado -
Area: 5.7500
Uma solução alternativa pode ser dada usando a função quad() fornecida pelo Octave da seguinte forma −
pkg load symbolic symbols x = sym("x"); f = inline("x^3 - 2*x +5"); [a, ierror, nfneval] = quad(f, 1, 2); display('Area: '), disp(double(a));
Octave executa o código e retorna o seguinte resultado -
Area: 5.7500
Exemplo 2
Encontre a área sob a curva:f(x) =x 2 cos(x) para −4 ≤ x ≤ 9.
Crie um arquivo de script e escreva o seguinte código -
f = x^2*cos(x); ezplot(f, [-4,9]) a = int(f, -4, 9) disp('Area: '), disp(double(a));
Quando você executa o arquivo, o MATLAB traça o gráfico -
A saída é dada abaixo -
a = 8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9) Area: 0.3326
A seguir está o equivalente de oitava do cálculo acima -
pkg load symbolic symbols x = sym("x"); f = inline("x^2*cos(x)"); ezplot(f, [-4,9]) print -deps graph.eps [a, ierror, nfneval] = quad(f, -4, 9); display('Area: '), disp(double(a));
MATLAB